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Abstract

A coupled thermomechanical model to simulate light alloy solidification problems in permanent composite
moulds is presented. This model is based on a general isotropic thermoelasto-plasticity theory and considers
the different thermomechanical behaviours of each component of the mould as well as those of the solidifying
material during its evolution from liquid to solid. To this end, plastic evolution equations, a phase-change
variable and a specific free energy function are proposed in order to derive temperature-dependent material
constitutive laws.

The corresponding finite element formulation and the staggered scheme used to solve the coupled non-
linear system of equations are also presented. Finally, the temperature and displacement predictions of the
model are validated with laboratory measurements obtained during an experimental trial. © 1999 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Several thermomechanical formulations for numerical modelling of different casting processes
have been developed by many researchers during the last years (see e.g. Bellet et al., 1993, 1996;
Celentano, 1994; Celentano et al., 1995, 1996; Chow et al., 1995; Gunasegaram et al., 1997;
Heinlein et al., 1986; Smelser and Richmond, 1988; Trovant and Argyropoulos, 1996; Vicente-
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Hernandez et al., 1995; Williams et al., 1990; Zabaras et al., 1990; 1991; and references therein) in
acknowledgement of the need to drive solidification modelling capabilities beyond traditional
limits defined by purely thermal simulation tools.

The thermomechanical simulation of the light alloy solidification in a permanent composite
mould is particularly complex due to, mainly, the phase-change effects, the different kind of mould
materials usually considered and the variable thermomechanical contact conditions caused by gap
formation occurring at the casting-mould interface. It is well known that the formation of this
gap results in a substantial reduction in heat transfer rates across such interface and hence is an
important factor in a solidification analysis (see e.g. Bellet et al., 1993, 1996; Celentano, 1994;
Celentano et al., 1995; Gunasegaram et al., 1997; Smelser and Richmond, 1988; Trovant and
Argyropoulos, 1996; Vicente-Hernandez et al., 1995).

This paper describes a coupled thermomechanical model for the analysis of light alloy sol-
idification problems in permanent composite moulds. The general thermomechanical context is
presented in Section 2 while Section 3 includes the constitutive models, formulated in the plasticity
theory framework, assumed for the materials involved in the process. In particular, the main new
features of the light alloy model proposed in this work are the consideration of an experimental-
based phase-change function, a temperature-dependent specific latent heat value and a phase-
change strain tensor in the constitutive laws, the choice of the internal variables with their evolution
equations accounting for the material state (liquid, mushy or solid) and a clear definition of the
difference between tangent and secant thermomechanical material properties used in the model
definition. Moreover, the expressions for all the constitutive laws of this original model are also
presented.

Further, the corresponding finite element formulation and the numerical strategy adopted to
solve the highly non-linear discretized equations are described in Section 4 and 5, respectively.
Finally, Section 6 contains the simulation of two simple casting examples and an experimental
validation of this model considering a light alloy solidification test.

2. Thermomechanical formulation

Let some open bounded domains Q, < R"; (I < ng, <3andi=1,...,m,4) be the reference
(initial) configurations of some 7.4, continuum thermoelasto-plastic bodies %, (that may ther-
momechanically interact between themselves) with material coordinates labeled by XeQ, (all of
them measured with respect to the same reference coordinate system), I',) = 0€;, their smooth
boundaries, respectively, and Y < R* be the time interval of analysis (z€ Y). Typically, subindex
(7) is used to identify the alloy and the different parts (often of different materials) composing the
mould. For simplicity in the notation, subscript (i) will be dropped from here onwards. Moreover,
infinitesimal displacements/strain relationships are assumed.

In the context of general thermodynamics (see e.g. Coleman and Gurtin, 1967; Lubliner, 1990;
Ziegler 1969), the existence of the specific Helmholtz free energy function yy = 1/}(3, o, T) =w—nT
can be assumed as a function of the thermodynamic state variables &, &, and T, where ¢ is the
strain tensor (in tensor notation, ¢ = 1/2 (V® u+u ® V), where u is the displacement vector and
V = 0/0X is the gradient operator), a, is the n;,~-dimensional (k = 1,..., ny,; iy, = 1) vector field
of phenomenological internal state variables (usually governed by rate equations with their cor-
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responding initial conditions) and 7 is the temperature. Moreover, w is the specific internal energy
and 7 is the specific entropy. The consideration of the Coleman method leads to the following
relations (see e.g. Coleman and Gurtin, 1967): ¢ = p,0y/0s and n = —Oy/0T, such that ¢ is the
stress tensor and p, is the density at the initial configuration. As a consequence of these equations,
w =Yy — 0y /OTT. Therefore, the governing local equations describing a general thermomechanical
process can be written in this framework as:

—equation of motion,

Veo+pobyr=poii InQxY, 2.1
—heat balance equation,

—pocT—Vq+por—TP:t+poriny, =0 N QxY, (2.2)
—dissipation equation,

—q'VI+D;,; 20 inQx7Y, (2.3)
together with appropriate boundary and initial conditions and the following additional constitutive
equations: ¢ = — T 9*/0T" is the tangent specific heat capacity, ¢ = —k - VT is the heat flux vector

defined according to the Fourier law (k being the conductivity tensor), =
—po 0" /0e 0T = —06/0T is the tangent conjugate of the thermal dilatation tensor and
Fine = (T 0% /0ot 0T — Oy [Oat) © ay is the specific internal heat source. Furthermore, b, is the specific
body force, r is the specific heat source, the superposed dot denotes time derivative and the symbol
© indicates the appropriate multiplication conforming to the nature of each internal variable a,.
Ineqn (2.3), D" = —¢-VT and D,,, = q, © & are the so-called thermal and internal dissipations,
respectively, where ¢, = q.(¢, o, T) = — p, 0Y/0a, are clearly the conjugate variables of a,. Instead
of eqn (2.3), an additional more restrictive dissipative assumption is to consider D" > 0 and
D;,, = 0 (see e.g. Coleman and Gurtin, 1967). In such a case, the first condition is automatically
fulfilled if |k| = 0 (|| is the determinant symbol) where, for the particular case of isotropic
conduction k = k1 (k being the conductivity coefficient and 1 the unity tensor), it leads to & > 0.

As it can be seen, the definition of {y constitutes a crucial point of the formulation since it is the
basis for the derivation of all the constitutive equations to be described in Section 3.

Although the boundary conditions have not been explicitly stated here (a full description of
them can be found in Celentano et al., 1996), they will be discussed in the thermomechanical finite
element formulation of Section 4.

3. Constitutive models
3.1. Internal variables

With the sake of describing the behaviour of the materials involved in the light alloy solidification
in a composite mould, the following split is proposed: n;,, = nf, +nly, where n,, and nf; denote
the number of internal variables related to plastic (non-reversible and assumed to occur in every
material existing in the process) and phase-change effects (only experience by the alloy), respec-
tively. Accordingly, ry,, = 1l + s and D, = D%, + D?,. Further, a more simpler model takes
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place if the same nf,, intern variables are defined for both the components of the mould and the
light alloy.

In the context of the rate-independent plasticity theory (see e.g. Lubliner, 1990), the thermo-
plastic behaviour of the solid is governed by a yield function F= F(g,a;, T); k=1,... 1,
(assumed strictly convex and, for simplicity, defined in terms of a unique smooth function) such
that no plastic evolutions occur when F < 0.

Further, the assumption of the principle of maximum plastic dissipation together with the load—
unload Kuhn-Tucker conditions and the Prager’s consistency condition, leads to an associate
temperature-dependent constitutive model characterized by plastic evolution equations of the type
&, = /g, in addition with some conditions over g,, F and g,, where / is the plastic consistency
parameter and g, are known functions (see e.g. Armero and Simo, 1992b; Celentano et al., 1996;
Lubliner, 1990). In this paper, the following possible option has been chosen for such equations:
(=&, 0, =9, ay=#«", oy =" nfy=4) and (q, =0, ¢;=%", 3= A", q,=T) with
F = F(e,%", 47, T), where & is the plastic strain tensor, 9 is the plastic 1sotroplc hardening
variable, ” is the plastic kinematic hardening tensor, {? is a plastic ‘yield’ entropy, é” is the plastic
isotropic hardening function and .#7 is the so-called back stress tensor, with the following evolution
equations:

6F
oF
p= i, o (32)
. oF
Kp = i K %’ (3.3)
, OF
=i (3.4)

where Hj is a function accounting for the isotropic strain or work hardening behaviours while H,.
is a function related to the kinematic hardening behaviour. In eqns (3.1)-(3.4),
(g, = 0FJ0e,9, = HyOF|0%",g, = H.0F/0A", g, = 0F/0T) where R = 0F/0e is normally known as
the flow potential tensor. Note that the evolution equation for {¥ is consistent with the principle
of maximum plastic dissipation in this thermomechanical context. Besides, zero initial conditions
are considered for eqns (3.1)—(3.4). The expression for the yield function will be given below.

The phase-change in the alloy is taken into account by means of the liquid—solid phase- change
function f,.€[0, 1] (see e.g. Celentano et al., 1994; Celentano and Pérez, 1996) (a5 = f,.;n = 1)
such that, f,. = 1 in the liquid phase and f,. = 0 in the solid phase. Note that, in order to obtain a
unified definition of the constitutive models, the condition f,. = 0 is assumed for the mould
components. In general, the evolution of /. in the mushy zone comes from a microstructural model
(see e.g. Thévoz et al., 1989). However, a simplified model is achieved by considering that f,.
depends explicitly on 7. In this particular case, the tangent specific heat capacity is now given by
(see e.g. Celentano et al., 1996):
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0* Of e
c= —TaTl/: —L 6](;” (3.5)

where L = L(T) is the tangent specific latent heat and, furthermore, the internal dissipation term
due to the evolution of f,. = f;(f(T ), i.e. DI = — po OY[f fes 1s implicitly included in the definition
of the entropy given in Section 2. Therefore, it can be demonstrated that 25 and D% should not
be considered in eqns (2.2) and (2.3), respectively. Within this context, the phase-change occurs in
a range of temperatures (7,— T), where T, and T, are the solidus and liquidus temperatures of the
alloy respectively, such that:

0 NT < T,
ﬂ(': oggpcgl 5T3<VT<Tla (36)
1 NT>T,

where the function g,. = §,.(7) may be obtained from experimental observations (see e.g. Celen-
tano and Pérez, 1996; Gunasegaram et al., 1997).

With these considerations, a Von Mises isotropic temperature-dependent yield function has been
adopted:

F=.3J, —%, (3.7)

where J, = 1/2[c — (1 —f,) #"]":[6 — (1 —f,.) # "]’ is the second invariant of the deviatoric tensor
6'—(1—f,) A" and € = € (%", T) is the total hardening function defined by:

€ =C"+(1—1,)6", (3.8)

where " = (T is the thermal hardening function (assumed to be a smooth function of 7).
Clearly, €™ is the temperature-dependent yield stress such that € — 0 in the liquid phase. More-
over, the derivatives of F appearing in eqns (3.1)-(3.4) are R = ﬁ/ Q2 )e—ATY,
0F|0%" = —(1—f,.), OF/0T = —0%"/0T+0f,./0T%¢" and OF/0A" = —(1—f,)R, respectively.
Definitions (3.7) and (3.8) are based on the assumption that the plastic behaviour of the material
is only due to its solid fraction expressed by (1 —f,.). At this stage, three important remarks may
be drawn: (1) classical plastic evolution equations are recovered for the solid phase (f,. = 0), (2)
no hardening effects occur in the liquid phase (f,. = 1) and (3) the mushy zone (0 < f,. < 1) is
described by weighting through the factor (1—f,.) the former two limiting situations.

In this context, Hy = —1 or Hy = —[6—(1—f,)#"]: R for the isotropic strain or work hard-
ening cases, respectively, while the simple Melan—Prager model (i.e., H, = 1) is assumed [in a
general case, however, H, could be a tensor representing, for instance, the ‘fading strain memory’
effect (see e.g. Lubliner, 1990)].

3.2. Specific free energy function

Restricting the analysis to the case of thermoelastic—plastic isotropic response, the following
specific free energy function = (e, &, 3, k”, {7, T) is proposed:

V=Yt e, (3.9)
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where Y, = ¥, (e—&", T), Vv, = t/}[p(Sp, k0", T) and ¢, = n}p(,(s—a”, T) are the thermoelastic,
thermoplastic and phase-change parts of s, respectively. It should be noted that eqn (3.9) is a
partially decoupled form of defining the specific free energy 1. Considering that the decomposition
of Y into ,, and y,, can nowadays be considered well established (see Armero and Simo, 1992b;
see Kleiber, 1991; Lubliner, 1990), the adding of ,,, firstly proposed by Celentano et al. (1996)
for a simpler model than the one presented here, is an assumption based on the fact that phase-
change effects are mainly governed by temperature. Once more, this definition is valid for both the
components of the mould and the alloy in its different states (liquid, mushy and solid). In all the
equations described below, the subscript 0 denotes the initial state of the different variables, while
the superscript s indicates secant thermomechanical properties measured with respect to the
reference temperature 7, (¢.g., the laboratory temperature). Additionally, &, = 0 is assumed.
The thermoelastic part v, is written as:

1 1
w==—"(e—¢&):C:(e—&)— —(e—¢):C":¢"
v 2/)0( ):C( ) po( )

1
+y.— l/’co + ;(3_317)3 oo —1No(T—To)+y,, (3.10)
0

where C* = C°(T) is the secant elastic isotropic constitutive tensor and &” = (T is the thermal
strain tensor given by:
81/1 = [O(fh(T_ Tref) - aflz()(TO - Tref)]15 (31 1)

with o), = @,(T) being the secant thermal dilatation coefficient. Further, the function v, = y/.(T)
is:

T
Y. = —J A.do, (3.12)
Tref
where the function A4, is:
Tle 0c (0—Tw)
A, = Lﬁf |:0 + 0 0 do, (3.13)

such that ¢’ = &(T) is the secant specific heat capacity. It should be noted that for the particular
case of constant ¢°, the more classical expression of . 1is obtained, i.e.,
Velecwe = E(T—Top) —TIn T/ T, (see e.g. Ziegler, 1983).

Although several sophisticated models considering more general hardening behaviours have
been developed to better represent different material phenomena, a relatively simple form of

writing the thermoplastic part of  is:

1
=3, L@y —/wﬂ W— T, (3.14)
Po
where hy» = hy»(T) and h, = h,(T) are the plastic isotropic and kinematic hardening moduli,
respectively.

The phase-change part is:
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1 e
Ve =wL—wLo—;(s—8”):C“:sp‘, (3.15)
0
where the function y, = (7T is:
T
Y, = —J 4,.d0, (3.16)
Trer
with
T L of, 0L (fpe—Jpaw)
A, = erf |:9 20 +ET do, (3.17)

where L* = L°(T) is the secant specific latent heat, Jpe.s 18 the phase-change function at the reference
temperature and & = 8“(T) is the phase-change strain tensor defined as:

& = =3[0 (e —rens) = Orea Soeg =1L (3.18)

where 9, = 5’,‘,6(T) is the secant phase-change volumetric deformation. The existence of this
volumetric deformation is a well-known experimental fact in the solidification of many alloys (see
Flemings et al., 1974). In sharp contrast with the present approach, this effect has been usually
taken into account in several thermomechanical models by assuming a large variation of the
thermal dilatation coefficient in the mushy zone (see e.g. Chow et al., 1995; Celentano et al., 1995).

A particular definition of C* accounting for phase-change effects is considered in eqns (3.10)
and (3.15) (see Celentano, 1996). During solidification, the alloy in liquid state becomes solid and,
therefore, a qualitative change in its thermomechanical properties is produced. This fact is taken
into account in the constitutive tensor written as:

C' = q::flol + (1 _.ﬁt')Céeva (3 19)

where C;,, and C., are the volumetric and deviatoric parts of C’, respectively. Note that eqn (3.19)
is an additional constitutive assumption implicitly contained in the proposed specific free energy
function given above. The importance of this definition of C* will be pointed out below.

With the present definition of iy, expressed in terms of secant thermomechanical properties, the
constitutive laws and the internal plastic dissipation can be obtained. Details of such derivations
are given below.

3.3. Constitutive laws

According to the definition given in Section 2, the secant stress—strain constitutive law is:
6=C:e—&—&"—¢)+0,, (3.20)

such that the additive strain decomposition is recovered as & = ¢ —g’ —&” — ¢, where &° is the so-
called elastic strain tensor. It should be noted that this secant or hyperelastic constitutive law
circumvents the usual thermodynamic constraints (see Cassenti and Annigeri, 1989), depends
exclusively on the thermoelastic and phase-change parts of the free energy function and is assumed
to be valid for the material in its different states. In particular, taking into account the definition
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of C’ and the secant constitutive relation given above [eqns (3.19) and (3.20), respectively], both
the classical constitutive law of a liquid at rest (i.e., zero deviatoric stress) and that corresponding
to a solid can be represented. It should be also noted that R is indeterminate when ¢ = 0 and
/. = 1. However, as %™ > 0 is assumed, it can be observed that F < 0 for this particular situation.
Therefore, a purely elastic behaviour of the material (4 = 0) is considered for this case.

Further, the definition of {y given above allows to compute the conjugate of the internal plastic
variables. It should be noted that the relations 6 = —p,0y/0¢” and T = — p,0y/0{” and fulfilled
while ¢” and #” can be expressed by:

C = hpd, (3.21)
H? = —h ok, (3.22)

resulting linear relations due to the particular definition of /”” given by eqn (3.14).

The proposed expression for i allows us to derive the tangent variables of the model. Firstly, it
is important to remark that C = C’ (C being the tangent elastic constitutive tensor given by
C = 06/0¢) due to the small displacements/strains context assumed here.

Considering eqn (3.20) and the definitions given in Section 2, the tangent conjugate of the
thermal dilatation f appearing in eqn (2.2) is:

S, s 80(21 1 s afl‘”? 65157( a@s 4
[f—C.{a,,,—i— aT(T—Tref)—3[5,,(. aT+ 0T(ﬁ,a—fpcmf) 1+ a7 & (3.23)
where for constant material properties and J,. = 0 the standard expression is obtained, i.e.,

p1C’ = cte, ay, = cte, 5, =0 = C*: 1. Tensor B can also be written as:

Lo e\, , T,
B =C <a,,1—35,,(, aT>1+ S (3.24)

where o, = o), +00,/0T(T—T,:) 1s the tangent thermal dilatation coefficient and
Ope = O3+ 003 JOT(fro —fre, ) (@fye/0T) " is the tangent phase-change volumetric deformation such
that &’ = o, 17 and & = —1/ 35p(,1fpc. The thermal and phase-change strain rates have been exten-
sively used in the context of hypoelastic models to simulate casting processes (see e.g. Bellet et al.,
1993, Chow et al., 1995; Smelser and Richmond, 1988; Zabaras et al., 1993, 1996). Moreover,
defining the tangent specific latent heat L appearing in eqn (3.5) as:

L oL e\
L=1L + aT(.fpz,‘ _.fp(frcf) <6T> 5 (325)
the function 4, can also be written in terms of L as:
T Lof,.
A, = Lﬂ 0 20 do. (3.26)

It should be noted that for constant «j,, J,. and L*, the respective tangent values coincide with
these secant ones.
Using standard concepts of plasticity theory, the tangent constitutive law can be written as:
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6=C"¢—prT, (3.27)
where the elasto-plastic tangent constitutive tensor C? is:

C?=C'-HAC: R® D, (3.28)
and the thermoelasto-plastic tangent constitutive tensor  is:

B = p—H(Z)yC*: R, (3.29)
such that the plastic consistency parameter is given by:

L=LD:e+y T, (3.30)
considering the following respective expressions for ® and y:

D = /LR: C, (3.31a)

1

X =/T;.(ﬂ:R+AX)’ (3.31b)
with

A, =R:C:R—(1—f,.)*(heHy—h,»H.R:R), (3.31¢)

A, =(1—f0) @’;”91’— ag; K" R>+ ame — %pr @, (3.314d)

H being the Heaviside function and { » the Macauley symbol.

Furthermore, the well-known plastic restriction (see e.g. Lubliner, 1990) 0F/da;, © g, < 0 for
F = F = 0 reads for this constitutive model as 4, > 0 for F = F = 0 which is clearly satisfied if the
additional constraint (1—£,.)*(heHy—hy»H . R:R) < R:C’: R is assumed, where R: R = 3/2 and
the condition R: C*: R > 0 is verified taking into account the definitions given above. In the solid
phase (f,. = 0), the particular situation represented by /., Hy —h,»H R:R < 0 is characteristic of
(strain or work) hardening plastic materials.

According to the definitions given above, the expressions of the specific entropy function
n=rn(—e,9, k" (" T), the specific internal energy w = d(e—¢’, 3, k",{*, T) and the tangent
specific heat capacity ¢ = é(e—¢”, ¥, k", T) can be found in Box 1. It should be noted that they
preserve the additive decomposition previously assumed for .

It can be clearly observed that eqn (3.5) includes the classical definition of the specific heat
capacity in the whole domain because the phase-change part of y does not play any role in the
expression of ¢. In the particular case of constant properties, ¢ | ¢ e, - et —cie = €' 1S Obtained.
Further, considering that ¢ —¢” is the thermoelastic deformation term (in the free energy definition
sense), it should be noted that the instantaneous elasticity assumption of the specific heat capacity,
usually accepted for metals (see e.g. Lubliner, 1990), is only fulfilled if the thermoplastic con-
tribution ¢” is neglected (Gunasegaram et al., 1997; Heinlein et al., 1986).

The specific internal plastic heat source %, is also described in Box 1 by means of two equivalent
expressions.
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Box 1
Specific entropy function, specific internal energy, tangent specific heat capacity
and specific internal plastic heat source

Specific entropy function
n=ni“e—&, T)+q",«" " T)+i"(e—¢,T)
with

. awm
=TT

1 oc* 1
= ——(—¢&)——(—&)+ —(e6—&"):C" 1,
2, G G )+ ema): O

1 Flog
o) s”’+A +10
Po

oy’ 1 0hy 1 Ohy» 1
[/ — 191) 2 _ - L 1 _p
n oT ~ 2p, 6T( ) 3p0 T KK+ pOC
rC— 550”" — 7L PS5 15 afpr e P CY
n oT A, 3po(s &):C’: 10, BT ( g )

Specific internal energy

o=0"(—¢&T)+0"( ¥ &, T)+o"(e—¢&,T)

with
ct//“ 1 1
te =_—(s—&):c’:(e—&)— —(e—¢&): C':&"
— - 3 )~ (et
1 T ace
(o . _ — (o __oP)- . —
+y.+ Po(s &):00—no(T—T,)+ g 2,00(8 &): GT‘(S &)
T ) ;
+p—(s—s”):@:lo¢,,, (s—s”) s”—i—A + Ty
0
01//"’ 1 1 T Ohy
p__ (4 K K — TP 9 2
- T e S Lt
T 611,/-1) T
—— K"K+ —{
2p 0T PoC
U/u‘ _ l//ﬁ“ é}l//ﬂ“ T = w L( sp) (Cy. /7(:+ TA
o’ = or T=Vem 3 :C g e
T 6] C*
= (e__oP) (5 pre (ool PC
3/’0(8 g):C: 16, (3T ( s)
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Box 1.—Continued

Tangent specific heat capacity

c=7(—e&, T)+é"(P, k", T)+(e—¢", T)

with
oy T o*C* 2T oc
=T = ——(—&): (e—&)+ —(e—¢&"):— lu
oT? 2p0 Vg e e o
T oo, T 0°C* oc*
+—(e—¢&"):C: 11—+ — e 4o+ T—T.
Po( ) T~ po 0T 5T( 0

=— 327];(8—3”): a;; 16, (';f; - 32[)7;(3—.91’): o 1% %
- 327To(8_8p): C*: 19, (;2])?’2‘ + ;:(8_811):%: "

Specific internal plastic heat source
=g+ T

with

LA,
r’=H4)—®
Po

rh = H(A")ix
! Po

and

A, =(TB+0):R+B,

_ ahrgﬂ » » 0/’1%//' » A
B, =(1—f,) [Hg (T o7 =€ |~ H (T W+ A7 R

in terms of D%,

T |
rhe =—(B: R+ A4,)2+ — D4,
Po Po
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Box 2
Tangent stress—strain relation for an isentropic process

6=Cr%
Isentropic elasto-plastic constitutive tensor
Co =C,—H(%)(C,; R+B,4,p) ®@®,
Isentropic tangent elastic constitutive tensor
C,=C+BBRB
Isentropic plastic consistency parameter
Jy =D, )
with

1

n

n I—XB,](ﬁR+AZ)

B - T
" ‘+Lafp£
Po)| € oT

N
Il

Tangent stress—strain constitutive laws can also be obtained for different particular ther-
modynamical situations. For an isentropic process (y = 1, =1 = 0), for instance, such constitutive
law is shown in Box 2 where, if the condition ##” = 0 is additionally assumed, 4, = 0 should be
considered in it. As it will be shown in Section 5, these isentropic constitutive tensors will play a
relevant role in a specific numerical strategy usually used to solve the finite element equations of this
coupled problem. Finally, note that the condition #? = 1/p,{?, initially proposed and extensively
exploited by Armero and Simo (1992b) in thermomechanical problems without phase-change
effects, is only satisfied for constant hardening properties.

3.4. Internal plastic dissipation

For the constitutive model already described, the internal plastic dissipation becomes:

Dl = 6: ¥ + GV + A7 i+ T

/P - P aiwh_ afl’" P j
= {[a—(l—fm)H,cJ[ : R—(1—f, ) Hy% —T( A >}i > 0. (3.32)

This condition is automatically satisfied if there is not evolution of the internal plastic variables
(4 = 0). If this is not the case, taking into account the definitions of H, and H, given above, it can
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be proved that [6—(1—f,)H #"]: R >0 (note, however, that the plastic work rate o:&" pro-
portional to a: R could be less than zero in this case) and, in order to guarantee the fulfilment of
such equation, the following three sufficient conditions have to be assumed: (i) /g = 0, (ii)
0%"/0T < 0 and (iii) df,./0T > 0. The first condition is related to the isotropic (strain or work)
hardening behaviour of the material and guarantees that ¢” > 0, while the second one refers to
the thermal softening effect. Finally, the third condition is a constraint to be considered in the
definition of f,. given by eqn (3.6).

4. Finite element formulation

In the context of the finite element technique (see e¢.g. Hughes, 1987; Zienkiewicz and Taylor,
1989), the discrete problem can be obtained via a spatial Galerkin projection of the semidiscrete
problem into a finite dimensional subspace ,7", and ,7 ", of admissible C° continuous shape
functions NV, < ,¥", and N, < , 7", respectively. Consequently, the admissible ‘algorithmic’ solu-
tions spaces ,.%, and ;. (for fixed time 7€ Y), also consisting of typical C° functions, are defined
such that ju(X) < ;.%Z, and ;T(X) < %, respectively. Making use of the standard spatial interp-
olation for the displacement and temperature fields, it leads to:

u(X) = N,(X)'U° (4.1a)

WT(X) = Np(X)'T (4.1b)

where N, = [N,,... ,N,,nm] with N, = Ndle,7", and Ny = [Ny,,..., Ny, ] with Np. = N;e, 7 ¢
bothfori=1,...,n,g.ande=1,..., ngen.

In the above, N, and N; are the element shape function matrices for the displacement and
temperature interpolation, respectively. Further, ‘U is the nodal displacement vector, ‘T is the
nodal temperature vector (the superscript e denotes element values) and I is the identity matrix. It
should be noted that the same finite element interpolation is used for each component of # and 7.
For simplicity in the notation, the subscript 4 will be dropped from here onwards.

Following standard procedures, the global discretized thermomechanical equations can be
written in matrix form for a certain time 7 as:

R,=F,+F—~MU—F,=0
R;=F,—(C—C)T—KT—-L,,—(G-G,)U=0 4.2)

where R, and R are the mechanical and thermal residual vectors, respectively. The external force
vector is Fy, F,is the mechanical contact vector, M is the mass matrix and F, denotes the internal
force vector. Moreover, F; is the external heat flux vector, C is the capacity matrix, K is the
conductivity matrix and L',,C is the phase-change vector rate. Furthermore, G is the thermoelastic
coupling matrix, while C, and G, are coupling matrices due to plastic effects.

The time integration of the terms containing derivatives of U and T in system (4.2) is performed
via the Newmark method and the generalized mid-point rule algorithm, respectively (see e.g.
Hughes, 1987; Zienkiewicz and Taylor, 1989). The latter has been also used to integrate all the
rate equations involved in the constitutive model presented in Section 3.

As usual, all vectors and matrices are assembled from the element contributions in the standard
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Box 3
Element matrices and vectors in the discretized thermomechanical equations

n

FO— | N7b.dQ+ J N7idT,+ Y F©
Ja© r© j=1
F9 = B7 6dQ
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Bo=| Aryar,
J I—;«)

M© = J N7 poN, dQ
Q(("

FO — J N’{pordQ+J N7 g qu+J N7 WT,,, dT. + Z FY
Q© ) re j=1 4

(
r,

»

C9 = | N7pyeNydQ
JQ“"
n
K9 = | (YN)7kVN;dQ+ | NZAN;dT.+| N7h,N, dT'
979" V97 f
J Q((’i l—fv) r‘fi,)
. ( o~ .
LY = | Nip,Lf, dQ
./QM
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o= | NFANdQ
.)Q(G)
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GY = | N7Tp”BdQ
Ja©
»
GY = | N7 BdQ
Jo©
with

NqT = [NTa *NT]

Lo - J 7 poL (fro—frn) A2
Q(L"

manner. The form of the different elemental expressions appearing in system (4.2) can be seen in
Box 3, where the superscript 7 denotes the transpose symbol and B is the classical strain—
displacement matrix. Besides, F,, and F, represent the point force vector and the temperature-
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dependent concentrated heat flux vector, respectively, with 7. and n, being the corresponding
number of loaded element nodes.

The mechanical boundary conditions are given by the prescribed traction vector ¢ acting on I,
and the contact traction vector ¢, due to the fact that two or more bodies can interact between
themselves through I',such that I', = T',. Note that F,is zero in absence of contact effects (see e.g.
Celentano et al., 1996; Wriggers and Miehe, 1992). Further, frictionless contact conditions are
assumed for ¢. Moreover, the thermal boundary conditions are expressed by the prescribed normal
heat flux g on I', and the heat transfer coefficients /1 = h(T) and h, = ﬁq(T (> 9> Pn) accounting
for conduction—convection—radiation phenomena (note that a unique heat transfer coefficient is
assumed to include these three phenomena); the first between a body and its surrounding environ-
ment at I'. and the second between two bodies through I'I'. = I', and I', = I'), where g, is the
so-called normal gap and p, is the normal contact pressure. As it will be shown in Section 6, an
extremely important fact in many casting simulations is that 4, may depend on g, and p, in order
to represent the strong variations of the heat transfer rates across I'/for different contact conditions.
Also note that the third integral of K is only evaluated in I'; = due to the consideration of matrix
N, in its expression. Further details about the thermomechanical contact models used in the
present work can be found in Celentano et al. (1996).

It should be noted that the vector L, contains the latent heat effect when f,, # 0 where, in this
case, a non-standard spatial integration has been adopted to compute L, accurately (see Celentano
et al., 1994 for more details). Finally, as expected, the plastic coupling matrices (C, and G,) are
zero if no plastic evolutions take place.

5. Solution strategy

One possible way to solve the coupled system of eqns (4.2) is via a staggered scheme (see e.g.
Armero and Simo, 1992a, b; Celentano et al., 1996; Kleiber, 1991). Within this framework, different
implementations are available. In particular, the so-called ‘Iterative—Converged—Consecutive’
strategy, widely exploited by Celentano (1994), is presented in Box 4. The objective is to find the
numerical solution of the thermomechanical problem at time 7+ Af assuming a known response
for time ¢. To this end, the coupled thermomechanical solution is obtained by solving the thermal
and mechanical problems separately and checking, additionally, the global convergence criterion.
Such problems are expressed by the energy and momentum equations together with the corres-
ponding boundary constraints, initial conditions and constitutive laws. It should be noted that the
strategy name given above is due to the fact that the thermomechanical solution is iteratively
achieved by means of locally converged thermal and mechanical solutions obtained in a consecutive
form.

In Box 4, AT is the nodal temperature vector increment, j, is the local iteration index associated
to the thermal problem, J; = —0R;/0T is the thermal Jacobian matrix and I is the ‘thermal
interchange array’ to be transferred to the mechanical problem. Similarly, AU is the nodal dis-
placement vector increment, j,, is the local iteration index associated to the mechanical problem,
Jyu = —0R,/0U is the mechanical Jacobian matrix and I, is the ‘mechanical interchange array’
to be transferred to the thermal problem. Moreover, j; is the global iteration index related to the
thermomechanical problem. As mentioned above, AU and AT are computed separately.
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Box 4
Staggered scheme for coupled thermomechanical problems: ‘Iterative—Converged—
Consecutive’ strategy

Thermomechanical problem at time 7+ At:
Initial conditions:
1+A170.0 ='T
I+AIU0,0 — IU
Global iterative solution:
e thermal problem (heat balance equation)
e mechanical problem (momentum equation); jo =0,..., e,
e global convergence
ethermal problem (heat balance equation)
input:
I+A’1/Z?'¥G — [1+A18/‘L</’G) I+A,é/,,,/cy I+A18[J/'l;-_/(;’ 1+A13p/l,<fc,
1+A/Kp_/'b‘/'(;’ [+A[\q7/1l”/.("a HAIP,/,"/“]
local iterative solution:
[+ArJ/'TUT— I"/GAT/"‘fG — '+A’R'/7§_ Ljg
t+AtT/'L,,/'G — t+AtT/'L,—1,/G+AT/'L,,iG
1+ At Ry
IR

Il

Ju = 17 e ’nilerT
R,
output:
AL T gdg — LAY e CEACTY e L ALLT
I7l"UO — [ Tv G, Tv q, pr( u]

r+AtTO,/O+l — '+ArT/L*IO

The main features of this staggered scheme are:

—a proper interchange of variables is performed between the two problems with the sake of
computing all the thermomechanical coupling effects. The interchange arrays are: I, = [T, T, f,]
and I, = [¢,8,¢",%,k", g, p,]. Note that the global iteration index j; only increases when the
two interchanges take place,

—a global convergence criteria is adopted for the coupled thermomechanical problem due to the
highly non-linearities existing in it. Therefore, it is assumed that a converged thermomechanical
solution is achieved when the two conditions shown in Box 4 are fulfilled for the same j;(|| * ||
is the L, vector norm, and ¢, and ¢, are the thermal and mechanical measures of the admissible
out-of-balance residuals, respectively),
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Box. 4.—Continued

e mechanical problem (momentum equation)
input:

1+A111ﬁ{(,~ — [1+A1 T/', ‘/'G’ t+Ar T;‘U,/G, I+Al‘f-/l.;(',’/(7]
local iterative solution:

t+ A,Jlbb’lj l.ng U/l""/G — t+AtRjévv* Ljg

f+A’Ufu"i(; — 1+Ar U/.L'il’/.li_FAU’.L“/G

UV Ju = L. > Piger,,
t+At Py
IR
t+ At Ry
5 Fyll
output:
At YiyJg At ofyrsde At gjde A A
1+ tI/LLqZO — [r+ ’g’t /(,’r+ ts/L /O’t+ Igp/L /05H~ r‘gp/L /(,’

r+Ath/‘L,/U, t+AtgLL,/G, 1+AIPLL.,/G]
t+AL UUA/G+ 1 _ r+Ar Uil"‘/‘;
e global convergence

H,‘FA"R/‘LL"/GHZ

R,
[ ’

IRy

R
|74 Frll» '

—if only I exists, the problem is thermally unidirectional coupled. In this case, n;,, = 1 where
I, contains converged values,
—the problem is bidirectional coupled when I, and I, are performed.

The Jacobian matrices used in this staggered scheme for the isothermal, adiabatic and improved
isothermal partitions can be found in Box 5. These partitions are fractional step methods associated
with a two phase operator split of the full non-linear thermomechanical system (4.2) into a
thermal phase at fixed configuration followed by an isothermal or adiabatic mechanical phase. The
isothermal partition is only conditionally stable while the adiabatic split preserves the unconditional
stability property characteristic of fully implicit (monolithic) schemes (see e.g. Armero and Simo,
1992a, b). However, as reported by Celentano (1994) for a simpler model than the one proposed
here, the improved isothermal split is stable even when the coupling stability conditions of the
numerical solution when using the isothermal partition for quasi-static and dynamic problems are
violated.

Some simplificative assumptions have been considered in the derivation of J;; by neglecting the
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Box 5
Jacobian matrices for different partitions

e isothermal split:
1
Jir =K+ (C+C.=C)
Jyu = Ky+ K/
e adiabatic split:
1
JTT =K+ E(CJ’_ Cp(' - Cp)
Jov = Ky + K,
e improved isothermal split:
JTT = K+ (C+ pc q; + Crh)

Jyu = Ky+ K,

temperature dependence of the thermal properties and external actions. The element contributions
of the matrices involved in the Jacobian expressions are shown in Box 6, where K, is the stiffness
matrix, K, is the isentropic stiffness matrix, K, is the contact matrix, C,. is the phase-change
matrix and C,, is the thermal coupling matrix (¢ is the trace symbol) Wthh is obtained by
performing the additive strain decomposition of the thermoelastic coupling term GU.

Once more, the evaluation of K is only done at the boundary I';  due to the consideration of
matrix /V, inits expression. The normal asperity stiffness £, guarantees the perfect impenetrability
condition as E, — oo. The derivation of the contact constitutive tensor € is straightforward for
g, < 0 and the open normal gap situation given by g, > 0. It should be noted, however, that for
the particular case of g, = 0, a regularized tensor is used in order to avoid numerical oscillations.
Moreover, an exhaustive study on the computation of C,., which is crucial for the convergence
and stability of the thermal numerical solution, can be found in Celentano et al. (1994).

Finally, in this context, the quadratic convergence of the Newton—Raphson’s method may not
be achieved. Nevertheless, the thermal and mechanical residuals are ‘exactly’ (within the numerical
frame) evaluated leading to a conservative formulation in the weak form sense.

6. Numerical examples
6.1. A unidirectional solidification example

A unidirectional solidification problem, previously analyzed by Heinlein et al. (1986) and
Zabaras et al. (1990), is here undertaken in order to show the performance of the proposed
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Box 6
Element matrices appearing in the Jacobian expressions
K¢ = B7C”BdQ
UQ(L’)
K&ji = B7CBdQ
Jo®©
KO = . NJC/N,, dr,
i a a nC
co=| N7por PN, a0
Ja© oT
Cil = | NiTu(pa,NrdQ
uQ‘”
with
Nq” = [jvm 71\’11]
n,E;, forg, <0
¢ =C/ forg, =0
0 forg, >0
Eml = Enn(l)
Table 1

Thermal properties of the aluminium

o Density: p, = 2650.0 [kg/m?]

o Specific heat: ¢ = 0.2526 [kcal/kg°C]

e Heat conductivity: £ = 0.0548 [kcal/ms°C]
e Latent heat: L = 94.44 [kcal/kg]

e Melting temperature: 7, = 660 [°C]

model. The geometry of the problem is a rectangular region (width = 0.01 m in the x direction,
height = 0.25 m in the y direction and unit thickness) initially occupied with high purity liquid
aluminium at the melting temperature 7,,. The thermal and mechanical properties of the aluminium
are listed in Tables 1 and 2, respectively. For this material, f,, = H(T—T,,) (H being the Heaviside
function). Plane strain conditions have been assumed and a particular definition of the inelastic
deformation rate is used (see Zabaras et al., 1990):
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Table 2
Mechanical properties of the aluminium

e Poisson ratio: v = 0.37

e Young modulus:

E [Mpa] rrc
6.93 x 10* 0.0
4.0458 x 10* 660.0

e Tangent thermal dilatation coefficient:

%y [1/°C] rra

23.19x 10 25.0
27.86x 10 300.0
30.23x10°° 400.0
38.355x 10~° 660.0

o Coefficients of constitutive law:

Coeflicient Value

A, 0.382x 10" [s7']
B. 0.037 [MPa~"]
C. 18849 [°K]

n, 3.84

The variations of E and o, have been assumed to be piecewise linear
within the mentioned temperatures. Below the lowest and above the
highest temperatures, the properties are assumed to remain constant at
the same value defined for the extreme temperature.

¥ =_-A.e 1+273

“ _[sinh(B.6)]" |
2 s ¢

: (6.1)

where A4., B., C. and n. are material constants, 6 = /3J, (J, = 1/26”: ") is the effective stress, the
temperature 7" must be in degrees Celsius, no hardening effects are considered and, moreover,
0, =0 1is adopted. Note that this evolution equation 1is similar to (3.1) with
/= A, e 1</T275inh(B.5)]"-. The boundaries at x =0 and x = 0.01 m are insulated and
restrained from motion in the x-direction while the side y = 0 is fixed. A temperature cooling
boundary condition of the following form is applied at y = 0:

T: T'u_f—(Tm_T'u)eiRla (62)
where T, = 300°C is the final steady-state temperature and R = 0.023 s~ ' is a cooling parameter.

Twenty-five four-noded isoparametric elements have been used in this example with a time step of
20 s.
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Fig. 1. A unidirectional solidification example: (a) temperature evolutions at different locations, (b) phase-change front
position evolution and (c) lateral stress evolution at different locations.

The temperature evolution at different locations is shown in Fig. 1(a). The phase-change front
position history is plotted in Fig. 1(b). All these results are in perfect agreement with those reported
by Heinlein et al. (1986) and Zabaras et al. (1990). The computed lateral stress histories at various
points are presented in Fig. 1(c). As shown in this last figure, the lateral stress is in general tensile
and builds up any location with the arrival of the front due to thermal contractions. Further, it
can be seen that the stress near y = 0 eventually relaxes while away from this boundary the stresses
are smaller due to the low temperature rate. Once more, these results are very similar to those
reported by Heinlein et al. (1986) and Zabaras et al. (1990).

6.2. Solidification of a circular cylinder

The solidification of an axially symmetric cylinder (radius = 0.018 m and height = 0.001 m)
initially filled with liquid aluminium at melting temperature is analyzed. For this problem, studied
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Fig. 2. Solidification of a circular cylinder: (a) temperature evolutions at different locations, (b) phase-change front
position evolution and (c) stress evolution at r = 0.018.

by Zabaras et al. (1990, 1991), the thermomechanical material properties are the same as those
employed in the first example. Plane strain conditions in the axial direction with a traction-free
outer surface (r = 0.018 m) have been assumed and eqn (6.1) is adopted to describe the inelastic
strain rate. The top and bottom are insulated while the outer surface is cooled with the temperature
history depicted in eqn (6.2) with T, = 500°C and R = 0.1 s™'. The finite element mesh considered in
the analysis consisted of eighteen four-noded isoparametric elements. The time step chosen was 0.5 s.
The temperature history at various locations and the phase-change front position are, respec-
tively, shown in Fig. 2(a) and (b). These results are in excellent agreement to those reported by
Zabaras et al. (1990). The radial, axial and hoop stress evolution up to the solidification time
(approximately 8.3 s) at r = 0.018 m are presented in Fig. 2(c). As seen from this figure, at the end
of the solidification both the hoop and axial stresses are compressive at the outer surface. The
trend of the stresses found in this paper is similar to that reported by Smelser and Richmond
(1998) and in a good quantitative agreement with the results obtained by Zabaras et al. (1990).
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6.3. Light alloy solidification in a permanent composite mould: experimental validation

In a casting situation where an aluminium alloy solidifies in a permanent mould, a gap initiates
and grows between the shrinking casting and the mould (see e.g. Gunasegaram et al., 1995; Nishida
et al., 1986). It is well known that the formation of this gap results in a substantial reduction in
heat transfer rates across the casting—mould interface and hence is an important factor in sol-
idification studies. Due to the thermomechanical nature of the gap formation, it has long been
recognized that a purely thermal analysis cannot properly represent this fact (see e.g. Bellet et al.,
1993, 1996, Celentano, 1994; Celentano et al., 1995, 1996; Chow et al., 1995; Gunasegaram et al.,
1997; Smelser and Richmond, 1988; Trovant and Argyropoulos, 1996; Vicente-Hernandez et al.,
1995). Other topics of interest are the description of the thermomechanical behaviour of the alloy
and the mould during the whole process with a special emphasis on the phase-change effects
occurring in the alloy solidification range, and the influence of selected casting parameters (e.g.,
mould preheat) on the solidification pattern.

The objective of this section is the experimental validation of the present thermomechanical
formulation in the analysis of the solidification process of an aluminium alloy in a permanent
composite mould. In the experiments (see Gunasegaram et al., 1997), commercial aluminium alloy
Al-7 Si-0.3 Mg was gravity cast in a composite permanent mould made of H13 hot work steel and
beryllium copper (BeCu, ASTM: C17510) along with insulating tombo marine board. The overall
experimental set up is shown in Fig. 3. The casting geometry was a stepped vertical cylindrical
block. The permanent composite mould comprises materials selected on the basis of their thermal
properties and assembled and operated in such a way as to promote directional solidification of
the casting. The metallic components of the mould were bolted onto each other. The H13 (bottom)
component was bolted down to a base via through-holes drilled in the tombo insulation. No mould
coat was used, except at the casting-H13 feeder interface and mould-mould interfaces where an
insulating ladle coat was applied. The temperature-dependent thermophysical and mechanical
properties of all these materials can be found in Tables 3 and 4, respectively. In particular, an
experimental-based solid fraction-temperature relationship with a temperature-dependent specific
latent heat value has been considered in the simulations.

Several thermocouples (TC) were inserted in the casting and the mould in order to obtain
temperature histories (see Fig. 3). It may be noted that those labelled 1-9 were chosen since they
were the most relevant. In particular, TC 1-6 were located in the same horizontal planes (A and
B) of the linear variable displacement transformer (LVDT) probes detecting casting and mould
radial displacement evolutions at the interface. Further details of the data acquisition system may
be found in Gunasegaram et al. (1995), 1997).

Two different experiments have been performed to evaluate the effect of low and high mould
preheat cases (experiments I and II, respectively) on the initiation time and growth rate of the
normal gap.

In these experiments, the correlation between the measured normal gap size (calculated as the
difference between the measured displacements of the corresponding surfaces of the casting and
the mould) and the casting-mould interfacial heat transfer coefficient (i.e., the i, = h;( g,) relation-
ship) was obtained in Gunasegaram et al. (1997) by solving the inverse heat conduction problem.
The same methodology was used in the derivation of the mould-ambient heat transfer coefficients.
The obtained heat transfer coefficients at the different interfaces are presented in Table 5. It should
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Fig. 3. Validation test: experimental set up: (a) half section elevation and (b) top view. All dimensions in mm.
Thermocouple numbers are shown within circles.
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Table 3
Thermal properties of the materials used in the experiments

Thermal properties of casting alloy

e Density:
p x 107 [kg/m’] rrci
2.68 500
2.58 545
2.58 607.8
2.53 611
e Tangent specific heat:
¢ [J/kg°K] T[°C]
876 0.0
926 100
972 200
1017 300
1061 400
1105 500
1125 545
1125 555
1085 611
e Conductivity:
k [J/ms°K] T[°C]
160 0
150 100
140 400
150 555
134 568
116 570
98 603
95 608
100 611
200 620
300 650
500 750
e Solid fraction:
(I—=1£50) T [°C] Lx10* [J/kg]
1.000 545 495
0.910 555 495
0.829 563 495
0.805 564 495
0.736 565 398
0.550 566 398
0.405 589 398
0.194 611 398
0.137 614 398
0.000 615 398

The variations of p, ¢, k, (1—f,.) and L have been assumed to be piecewise linear within the
mentioned temperatures. Below the lowest and above the highest temperatures, the properties
are assumed to remain constant at the same value defined for the extreme temperature.
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Table 3.—Continued

Thermal properties of H13 steel
e Density: 7626 [kg/m]

e Tangent specific heat:

¢ [J/kg°K] T[°C]
450 23
465 50
474 75
481 100
488 125
496 150
504 175
512 200
521 225
531 250
542 275
554 300
567 325
583 350
598 375
610 400
623 425
637 450
653 475
673 500
698 525
723 550
749 575
770 600
926 700
e Conductivity:
k [J/ms°K] T [°C]
21.037 20
22.889 100
24.716 200
26.237 300
27.307 400
27.336 500
27.968 600

The variations of ¢ and k have been assumed to be piece-
wise linear within the mentioned temperatures. Below the
lowest and above the highest temperatures, the properties
are assumed to remain constant at the same value defined
for the extreme temperature.
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Table 3.—Continued

Thermal properties of BeCu steel
o Density: 8750 [kg/m’]

e Tangent specific heat:

¢ [J/kgK] T[°C]
395 23
400 50
404 75
408 100
412 125
415 150
417 175
419 200
421 225
423 250
425 275
427 300
429 325
432 350
434 375
436 400
438 425
441 450
443 475
445 500
447 525
449 550
450 575
451 600
453 625
455 650
e Conductivity:
k [J/ms°K] T [°C]
260.246 23
277.736 100
292.556 200
301.131 300
309.385 400
307.595 500
306.218 600
308.934 650

The variations of ¢ and k have been assumed to be piece-
wise linear within the mentioned temperatures. Below the
lowest and above the highest temperatures, the properties
are assumed to remain constant at the same value defined
for the extreme temperature.
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Table 3.—Continued

Thermal properties of Tombo
o Density: 660 [kg/m’]
e Specific Heat: 1130 [J/kg°K]

e Conductivity:

k [J/ms°K] T[°C]
0.080 100
0.085 200
0.095 300
0.105 400
0.120 500

The variations of k have been assumed to be piecewise
linear within the mentioned temperatures. Below the low-
est and above the highest temperatures, the properties
are assumed to remain constant at the same value defined
for the extreme temperature.

be noted that, in general, different values for these coefficients have been derived for each mould
component.

A structured 2-D finite element mesh composed of about 550 axisymmetric four-noded iso-
parametric quadrilateral elements has been used for the numerical analysis of this problem.
The simulations have been carried out with VULCAN (see Celentano, 1996), a fully coupled
thermomechanical finite element code in which the constitutive models presented in this work have
been implemented. The bidirectional coupling numerical strategy shown in Box 4 was employed
in the analysis where, additionally, it can be demonstrated that the isothermal split is stable for
this problem since its coupling stability conditions are not violated. Moreover, the current study
does not include fluid flow and hence assumes instantaneous fill of the mould cavity.

The mechanical boundary conditions used in the simulations take into account the effects of the
bolts joining the mould components (no relative displacement between mould materials at inter-
faces) and the G-clamp placed on the upper part of the H13 feeder (no displacement at external
faces of the feeder in the horizontal plane corresponding to the clamp’s position). Moreover, a
frictionless contact model with E, = 10'° MPa/mm is considered at the casting-mould interfaces.

In the experiments, an air/gas mixture was used for mould preheating. The initial temperatures
attained by the casting and the various components of the composite mould for the experiments I
and II are given in Table 6.

Figure 4 shows the experimentally measured and computed temperature histories while the
radial displacement and normal gap evolutions are presented in Fig. 5, both for experiment I.
Additionally, similar results are presented in Figs 6 and 7 for experiment II.

As it can be seen in Figs 4 and 6, satisfactory agreement is obtained between experimental and
simulated temperature evolutions for both cases. In particular, a reasonably good description is
achieved in the phase-change region.

It is found in the experiments that the gap initiates when the alloy temperature close to the
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Table 4
Mechanical properties of the materials used in the exper-
iments

Mechanical properties of casting alloy
e Poisson ratio: v = 0.33

e Young modulus:

E [MPa] T[°C]
72.4x10° 25.0
1.0 x 10° 545.0
o Secant thermal dilatation coefficient:
o, x 1076 [1/°C] T[°C]
21.5 100.0
22.5 200.0
23.5 300.0
e Thermal hardening function:
€., [IMPa] T[°C]
100 25.0
0.01 545.0

e [sotropic hardening modulus: 100 [MPa]
o Kinematic hardening modulus: 100 [MPa]

e Secant phase-change volumetric deformation: 0.01

The variations of E, «j, and €, have been assumed to be
piecewise linear within the mentioned temperatures. Below
the lowest and above the highest temperatures, the proper-
ties are assumed to remain constant at the same value defined
for the extreme temperature.

casting surface falls to approximately 540°C, nearly independent of mould preheat, mould material,
cooling rate, casting section radius and/or metallostatic head. This effect is closely related to the
hardening development characteristics during the alloy solidification (see e.g. Singer and Cotrelli,
1946).

As may be seen in Figs 5 and 7, the gaps do not initiate until the casting surface follows the
mould surface due to lack of strength in the solidifying casting. Although good qualitative agree-
ment between measured and numerically predicted radial displacement and gap evolutions has
been obtained, the quantitative fitting is only reasonable. Reasons for this deviation may be due
to the approximate nature of the thermal hardening function-temperature relationship used for
the casting alloy at high temperatures (particularly in the mushy zone), the accuracy in the heat
transfer coefficients considered in the analysis, the assumption of uniform initial temperature
distribution for the casting and every component of the mould and the inward flexing of the
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Table 4.—Continued

Mechanical properties of H13 steel
e Poisson ratio: v = 0.30
® Young modulus: 216 x 10° [MPa]

e Secant thermal dilatation coefficient:

o, x 1076 [1/°C) T[°C]
11.5 100.0
12.0 200.0
12.2 300.0
12.5 400.0
12.8 500.0
13.0 600.0
o Thermal hardening function:

€ [MPa] T
1005 425.0

820 540.0

690 595.0

350 650.0

The variations of «j, and %, have been assumed to be piece-
wise linear within the mentioned temperatures. Below the
lowest and above the highest temperatures, the properties
are assumed to remain constant at the same value defined
for the extreme temperature.

Mechanical properties of BeCu steel
e Poisson ratio: v = 0.28
e Young modulus: 132.5 x 10° [MPa]
o Secant thermal dilatation coefficient: 17.6 x 10~¢ [1/°C]

e Thermal hardening function:

% [MPa] T
760 20.0
260 200.0

The variations of %, have been assumed to be piecewise
linear within the mentioned temperatures. Below the lowest
and above the highest temperatures, the properties are
assumed to remain constant at the same value defined for
the extreme temperature.

Mechanical properties of Tombo
e Poisson ratio: v = 0.30
e Young modulus: 2.8 x 10° [MPa]
e Secant thermal dilatation coefficient: 0.0 [1/°C]
o Thermal hardening function: 0.084 [MPa]
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Table 5
Heat transfer coefficients at the different interfaces

Thermal boundary conditions
Heat transfer coefficient

Interface Wm—2K™

H13 (bottom)—air 30

BeCu (middle)—air 30

BeCu (top)—air 30

H13 (feeder)—air 30

Tombo—air 20

Casting—air 50

H13 (bottom)—casting:

g, [mm]
10,000 0.000

4500 0.005
3000 0.010
2000 0.015
1500 0.030

BeCu (middle and top)—casting:

g, (mm]

8000 0.000
2800 0.005
1600 0.010
1200 0.015

H13 (feeder)—casting: 700

Casting—Tombo 400

H13 (bottom)—Tombo 250

H13 (bottom)—BeCu (middle) 2000

BeCu (middle)—BeCu (top) 2000

BeCu (top)—H13 (feeder) 2000

The variations of / have been assumed to be piecewise linear within the mentioned
gaps. Below the lowest and above the highest gaps, the values of /1 are assumed to
remain constant at the same value defined for the extreme gap.

mould as soon as the melt is poured into the cavity. Note, however, that the numerical solutions
approximately adjust the measured initiation times of the normal gap.

For these experiments, it is also observed that the rate of growth of the gap width is greater in
the lower mould preheat case (Figs 5 and 7). The cause for the latter is shown to be the combined
effect of a higher casting shrinkage rate and a larger mould expansion rate. It can be seen that the
numerical solution approaches the experimental values. It should be also noted that below a certain
mould preheat, for a given mould material, not much reduction in solidification times was obtained
due to the drastic decrease of /1, once a normal gap is developed.
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Table 6
Initial temperatures (°C) for the experiments I and 11

Material Experiment | Experiment 11
Casting alloy 655 685
H13 (bottom) 195 399
BeCu (middle) 236 487
BeCu (top) 245 513
H13 (feeder) 246 573
Tombo insulation 133 291

The gap initiates earlier in the BeCu (middle) part of the mould than in the H13 (bottom) part
when the preheat is lower (experiment I, Fig. 5) but later when the preheat is higher (experiment
I1, Fig. 7). These phenomena can be, respectively, explained by the better early chilling capabilities
of BeCu and the different preheats of BeCu (middle) and H13 (bottom) for experiment II (see
Table 6).

7. Conclusions

A coupled thermomechanical model to simulate the light alloy solidification process in a per-
manent composite mould has been presented. The model is formulated within the plasticity theory
framework and accounts for the different behaviours of the materials involved in the problem. To
this end, a set of appropriate internal variables and a specific free energy function have been
proposed in order to derive the secant and tangent expressions for all the constitutive laws. The
main features of such equations are the consideration of an experimental-based phase-change
function, a temperature-dependent specific latent heat value and a phase-change strain tensor.

The corresponding finite element formulation standing out the importance of the variable
thermomechanical boundary conditions occurring in the problem has also been presented.

Special attention has been devoted to the numerical strategy used to solve the highly non-linear
coupled system of equations. An enhanced staggered scheme allowing the consideration of different
partitions has been used.

The model has been used in the simulation of two simple casting examples previously analysed
by other researchers. Moreover, the model has been also validated with laboratory measurements
obtained during an experimental test where satisfactory agreement between numerical and exper-
imental results can be observed for different casting situations. However, further research in the
thermomechanical material description specially at high temperatures is still necessary in order to
achieve even more realistic numerical responses.
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Fig. 4. Validation test: temperature evolutions for the experiment I: (a) thermocouples 1, 2 and 3, (b) thermocouples 4,
5 and 6 and (c) thermocouples 7, 8 and 9.
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Fig. 5. Validation test: radial displacement evolutions for the experiment I: (a) LVDTs 1 and 2 and (b) LVDTs 3 and
4. Normal gap evolutions for the experiment I: (c) LVDT planes A and B.
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experiment II: (a) thermocouples 1, 2 and 3, (b) thermocouples
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