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Abstract

A coupled thermomechanical model to simulate light alloy solidi_cation problems in permanent composite
moulds is presented[ This model is based on a general isotropic thermoelasto!plasticity theory and considers
the di}erent thermomechanical behaviours of each component of the mould as well as those of the solidifying
material during its evolution from liquid to solid[ To this end\ plastic evolution equations\ a phase!change
variable and a speci_c free energy function are proposed in order to derive temperature!dependent material
constitutive laws[

The corresponding _nite element formulation and the staggered scheme used to solve the coupled non!
linear system of equations are also presented[ Finally\ the temperature and displacement predictions of the
model are validated with laboratory measurements obtained during an experimental trial[ Þ 0888 Elsevier
Science Ltd[ All rights reserved[
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0[ Introduction

Several thermomechanical formulations for numerical modelling of di}erent casting processes
have been developed by many researchers during the last years "see e[g[ Bellet et al[\ 0882\ 0885^
Celentano\ 0883^ Celentano et al[\ 0884\ 0885^ Chow et al[\ 0884^ Gunasegaram et al[\ 0886^
Heinlein et al[\ 0875^ Smelser and Richmond\ 0877^ Trovant and Argyropoulos\ 0885^ Vicente!

� Corresponding author[ Departamento de Ingenier(�a Meca�nica\ Universidad de Santiago de Chile\ Avda[ Bdo[
O|Higgins 2252\ Santiago de Chile\ Chile[ E!mail] dcelentaÝlauca[usach[cl
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Hernandez et al[\ 0884^ Williams et al[\ 0889^ Zabaras et al[\ 0889^ 0880^ and references therein# in
acknowledgement of the need to drive solidi_cation modelling capabilities beyond traditional
limits de_ned by purely thermal simulation tools[

The thermomechanical simulation of the light alloy solidi_cation in a permanent composite
mould is particularly complex due to\ mainly\ the phase!change e}ects\ the di}erent kind of mould
materials usually considered and the variable thermomechanical contact conditions caused by gap
formation occurring at the castingÐmould interface[ It is well known that the formation of this
gap results in a substantial reduction in heat transfer rates across such interface and hence is an
important factor in a solidi_cation analysis "see e[g[ Bellet et al[\ 0882\ 0885^ Celentano\ 0883^
Celentano et al[\ 0884^ Gunasegaram et al[\ 0886^ Smelser and Richmond\ 0877^ Trovant and
Argyropoulos\ 0885^ Vicente!Hernandez et al[\ 0884#[

This paper describes a coupled thermomechanical model for the analysis of light alloy sol!
idi_cation problems in permanent composite moulds[ The general thermomechanical context is
presented in Section 1 while Section 2 includes the constitutive models\ formulated in the plasticity
theory framework\ assumed for the materials involved in the process[ In particular\ the main new
features of the light alloy model proposed in this work are the consideration of an experimental!
based phase!change function\ a temperature!dependent speci_c latent heat value and a phase!
change strain tensor in the constitutive laws\ the choice of the internal variables with their evolution
equations accounting for the material state "liquid\ mushy or solid# and a clear de_nition of the
di}erence between tangent and secant thermomechanical material properties used in the model
de_nition[ Moreover\ the expressions for all the constitutive laws of this original model are also
presented[

Further\ the corresponding _nite element formulation and the numerical strategy adopted to
solve the highly non!linear discretized equations are described in Section 3 and 4\ respectively[
Finally\ Section 5 contains the simulation of two simple casting examples and an experimental
validation of this model considering a light alloy solidi_cation test[

1[ Thermomechanical formulation

Let some open bounded domains V"i# W Rn
dim "0 ¾ ndim ¾ 2 and i � 0\ [ [ [ \ nbody# be the reference

"initial# con_gurations of some nbody continuum thermoelasto!plastic bodies B"i# "that may ther!
momechanically interact between themselves# with material coordinates labeled by X $ V"i# "all of
them measured with respect to the same reference coordinate system#\ G"i# � 1V"i# their smooth
boundaries\ respectively\ and Y W R¦ be the time interval of analysis "t $ Y#[ Typically\ subindex
"i# is used to identify the alloy and the di}erent parts "often of di}erent materials# composing the
mould[ For simplicity in the notation\ subscript "i# will be dropped from here onwards[ Moreover\
in_nitesimal displacements:strain relationships are assumed[

In the context of general thermodynamics "see e[g[ Coleman and Gurtin\ 0856^ Lubliner\ 0889^
Ziegler 0858#\ the existence of the speci_c Helmholtz free energy function c � c¼ "o\ ak\ T# � v−hT
can be assumed as a function of the thermodynamic state variables o\ ak and T\ where o is the
strain tensor "in tensor notation\ o � 0:1 "9 & u¦u & 9#\ where u is the displacement vector and9 � 1:1X is the gradient operator#\ ak is the nint!dimensional "k � 0\ [ [ [ \ nint^ nint − 0# vector _eld
of phenomenological internal state variables "usually governed by rate equations with their cor!
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responding initial conditions# and T is the temperature[ Moreover\ v is the speci_c internal energy
and h is the speci_c entropy[ The consideration of the Coleman method leads to the following
relations "see e[g[ Coleman and Gurtin\ 0856#] s � r9 1c:1o and h � −1c:1T\ such that s is the
stress tensor and r9 is the density at the initial con_guration[ As a consequence of these equations\
v � c−1c:1TT[ Therefore\ the governing local equations describing a general thermomechanical
process can be written in this framework as]

*equation of motion\

9 = s¦r9bF � r9u� in V×Y\ "1[0#

*heat balance equation\

−r9cTþ−9 = q¦r9r−Tb] o¾¦r9rint � 9 in V×Y\ "1[1#

*dissipation equation\

−q = 9T¦Dint − 9 in V×Y\ "1[2#

together with appropriate boundary and initial conditions and the following additional constitutive
equations] c � −T 11c:1T1 is the tangent speci_c heat capacity\ q � −k = 9T is the heat ~ux vector
de_ned according to the Fourier law "k being the conductivity tensor#\ b �
−r9 11c:1o 1T � −1s:1T is the tangent conjugate of the thermal dilatation tensor and
rint �"T 11c:1ak 1T−1c:1ak# �= a¾k is the speci_c internal heat source[ Furthermore\ bF is the speci_c
body force\ r is the speci_c heat source\ the superposed dot denotes time derivative and the symbol
�= indicates the appropriate multiplication conforming to the nature of each internal variable ak[
In eqn "1[2#\ Dth � −q = 9T and Dint � qk �= a¾k are the so!called thermal and internal dissipations\
respectively\ where qk � qk"o\ ak\ T# � −r9 1c:1ak are clearly the conjugate variables of ak[ Instead
of eqn "1[2#\ an additional more restrictive dissipative assumption is to consider Dth − 9 and
Dint − 9 "see e[g[ Coleman and Gurtin\ 0856#[ In such a case\ the _rst condition is automatically
ful_lled if =k= − 9 "= = is the determinant symbol# where\ for the particular case of isotropic
conduction k � k0 "k being the conductivity coe.cient and 0 the unity tensor#\ it leads to k − 9[

As it can be seen\ the de_nition of c constitutes a crucial point of the formulation since it is the
basis for the derivation of all the constitutive equations to be described in Section 2[

Although the boundary conditions have not been explicitly stated here "a full description of
them can be found in Celentano et al[\ 0885#\ they will be discussed in the thermomechanical _nite
element formulation of Section 3[

2[ Constitutive models

2[0[ Internal variables

With the sake of describing the behaviour of the materials involved in the light alloy solidi_cation
in a composite mould\ the following split is proposed] nint � np

int¦npc
int\ where np

int and npc
int denote

the number of internal variables related to plastic "non!reversible and assumed to occur in every
material existing in the process# and phase!change e}ects "only experience by the alloy#\ respec!
tively[ Accordingly\ rint � rp

int¦rpc
int and Dint � Dp

int¦Dpc
int[ Further\ a more simpler model takes
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place if the same np
int intern variables are de_ned for both the components of the mould and the

light alloy[
In the context of the rate!independent plasticity theory "see e[g[ Lubliner\ 0889#\ the thermo!

plastic behaviour of the solid is governed by a yield function F � F
"o\ ak\ T#^ k � 0\ [ [ [ \ np
int

"assumed strictly convex and\ for simplicity\ de_ned in terms of a unique smooth function# such
that no plastic evolutions occur when F ³ 9[

Further\ the assumption of the principle of maximum plastic dissipation together with the loadÐ
unload KuhnÐTucker conditions and the Prager|s consistency condition\ leads to an associate
temperature!dependent constitutive model characterized by plastic evolution equations of the type
a¾k � l¾gk in addition with some conditions over qk\ F and gk\ where l¾ is the plastic consistency
parameter and gk are known functions "see e[g[ Armero and Simo\ 0881b^ Celentano et al[\ 0885^
Lubliner\ 0889#[ In this paper\ the following possible option has been chosen for such equations]
"a0 � op\ a1 � qp\ a2 � kp\ a3 � zp^ np

int � 3# and "q0 � s\ q1 � Cp\ q2 � Kp\ q3 � T# with
F � F
"s\ Cp\ Kp\ T#\ where op is the plastic strain tensor\ qp is the plastic isotropic hardening
variable\ kp is the plastic kinematic hardening tensor\ zp is a plastic {yield| entropy\ Cp is the plastic
isotropic hardening function and Kp is the so!called back stress tensor\ with the following evolution
equations]

o¾p � l¾
1F
1s

\ "2[0#

q¾ p � l¾Hq

1F

1Cp
\ "2[1#

k¾ p � l¾ Hk

1F

1Kp
\ "2[2#

z¾p � l¾
1F
1T

\ "2[3#

where Hq is a function accounting for the isotropic strain or work hardening behaviours while Hk

is a function related to the kinematic hardening behaviour[ In eqns "2[0#Ð"2[3#\
"g0 � 1F:1s\ `1 � Hq 1F:1Cp\ g2 � Hk 1F:1Kp\ `3 � 1F:1T# where R � 1F:1s is normally known as
the ~ow potential tensor[ Note that the evolution equation for zp is consistent with the principle
of maximum plastic dissipation in this thermomechanical context[ Besides\ zero initial conditions
are considered for eqns "2[0#Ð"2[3#[ The expression for the yield function will be given below[

The phase!change in the alloy is taken into account by means of the liquidÐsolid phase!change
function fpc $ ð9\ 0Ł "see e[g[ Celentano et al[\ 0883^ Celentano and Pe�rez\ 0885# "a4 � fpc^ npc

int � 0#
such that\ fpc � 0 in the liquid phase and fpc � 9 in the solid phase[ Note that\ in order to obtain a
uni_ed de_nition of the constitutive models\ the condition fpc � 9 is assumed for the mould
components[ In general\ the evolution of fpc in the mushy zone comes from a microstructural model
"see e[g[ The�voz et al[\ 0878#[ However\ a simpli_ed model is achieved by considering that fpc

depends explicitly on T[ In this particular case\ the tangent speci_c heat capacity is now given by
"see e[g[ Celentano et al[\ 0885#]
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c � −T
11c

1T1
−L

1fpc

1T
"2[4#

where L � L
"T# is the tangent speci_c latent heat and\ furthermore\ the internal dissipation term
due to the evolution of fpc � f¼pc"T#\ i[e[ Dpc

int � −r9 1c:1fpcf¾pc\ is implicitly included in the de_nition
of the entropy given in Section 1[ Therefore\ it can be demonstrated that rpc

int and Dpc
int should not

be considered in eqns "1[1# and "1[2#\ respectively[ Within this context\ the phase!change occurs in
a range of temperatures "Tl−Ts#\ where Ts and Tl are the solidus and liquidus temperatures of the
alloy respectively\ such that]

fpc � 8
9 ^[T ³ Ts

9 ¾ `pc ¾ 0 ^Ts ¾ [T ¾ Tl

0 ^[T × Tl

\ "2[5#

where the function `pc � ¼̀ pc"T# may be obtained from experimental observations "see e[g[ Celen!
tano and Pe�rez\ 0885^ Gunasegaram et al[\ 0886#[

With these considerations\ a Von Mises isotropic temperature!dependent yield function has been
adopted]

F � z2J1k
−C\ "2[6#

where J1k
� 0:1ðs−"0−fpc#KpŁ?] ðs−"0−fpc#KpŁ? is the second invariant of the deviatoric tensor

s?−"0−fpc#Kp? and C � C
"Cp\ T# is the total hardening function de_ned by]

C � Cth¦"0−fpc#Cp\ "2[7#

where Cth � C
th"T# is the thermal hardening function "assumed to be a smooth function of T#[
Clearly\ Cth is the temperature!dependent yield stress such that Cth : 9 in the liquid phase[ More!
over\ the derivatives of F appearing in eqns "2[0#Ð"2[3# are R � z2:"1zJ1k

#"s−Kp#?\
1F:1Cp � −"0−fpc#\ 1F:1T � −1Cth:1T¦1fpc:1TCp and 1F:1Kp � −"0−fpc#R\ respectively[
De_nitions "2[6# and "2[7# are based on the assumption that the plastic behaviour of the material
is only due to its solid fraction expressed by "0−fpc#[ At this stage\ three important remarks may
be drawn] "0# classical plastic evolution equations are recovered for the solid phase " fpc � 9#\ "1#
no hardening e}ects occur in the liquid phase " fpc � 0# and "2# the mushy zone "9 ³ fpc ³ 0# is
described by weighting through the factor "0−fpc# the former two limiting situations[

In this context\ Hq � −0 or Hq � −ðs−"0−fpc#KpŁ] R for the isotropic strain or work hard!
ening cases\ respectively\ while the simple MelanÐPrager model "i[e[\ Hk � 0# is assumed ðin a
general case\ however\ Hk could be a tensor representing\ for instance\ the {fading strain memory|
e}ect "see e[g[ Lubliner\ 0889#Ł[

2[1[ Speci_c free ener`y function

Restricting the analysis to the case of thermoelasticÐplastic isotropic response\ the following
speci_c free energy function c � c¼ "o\ op\ qp\ kp\ zp\ T# is proposed]

c � cte¦ctp¦cpc\ "2[8#
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where cte � c¼ te"o−op\ T#\ ctp � c¼ tp"qp\ kp\ zp\ T# and cpc � c¼ pc"o−op\ T# are the thermoelastic\
thermoplastic and phase!change parts of c\ respectively[ It should be noted that eqn "2[8# is a
partially decoupled form of de_ning the speci_c free energy c[ Considering that the decomposition
of c into cte and ctp can nowadays be considered well established "see Armero and Simo\ 0881b^
see Kleiber\ 0880^ Lubliner\ 0889#\ the adding of cpc\ _rstly proposed by Celentano et al[ "0885#
for a simpler model than the one presented here\ is an assumption based on the fact that phase!
change e}ects are mainly governed by temperature[ Once more\ this de_nition is valid for both the
components of the mould and the alloy in its di}erent states "liquid\ mushy and solid#[ In all the
equations described below\ the subscript 9 denotes the initial state of the di}erent variables\ while
the superscript s indicates secant thermomechanical properties measured with respect to the
reference temperature Tref "e[g[\ the laboratory temperature#[ Additionally\ o9 � 9 is assumed[

The thermoelastic part cte is written as]

cte �
0

1r9

"o−op#] Cs]"o−op#−
0
r9

"o−op#] Cs] oth

¦cc−cc9
¦

0
r9

"o−op#] s9−h9"T−T9#¦c9\ "2[09#

where Cs � C
s"T# is the secant elastic isotropic constitutive tensor and oth � o¼th"T# is the thermal
strain tensor given by]

oth � ðas
th"T−Tref#−as

th9
"T9−Tref#Ł0\ "2[00#

with as
th � a¼s

th"T# being the secant thermal dilatation coe.cient[ Further\ the function cc � c
c"T#
is]

cc � −g
T

Tref

Ac du\ "2[01#

where the function Ac is]

Ac � g
T

Tref
$
cs

u
¦

1cs

1u

"u−Tref#
u % du\ "2[02#

such that cs � c¼s"T# is the secant speci_c heat capacity[ It should be noted that for the particular
case of constant cs\ the more classical expression of cc is obtained\ i[e[\
cc =cs�cte � cs"T−Tref#−csT ln T:Tref "see e[g[ Ziegler\ 0872#[

Although several sophisticated models considering more general hardening behaviours have
been developed to better represent di}erent material phenomena\ a relatively simple form of
writing the thermoplastic part of c is]

ctp � −
0

1r9

hCp"qp#1¦
0

1r9

hKpkp] kp−
0
r9

Tzp\ "2[03#

where hCp � h¼Cp"T# and hkp � h¼kp"T# are the plastic isotropic and kinematic hardening moduli\
respectively[

The phase!change part is]
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cpc � cL−cL9
−

0
r9

"o−op#] Cs] opc\ "2[04#

where the function cL � c¼ L"T# is]

cL � −g
T

Tref

Apc du\ "2[05#

with

Apc � g
T

Tref
$
Ls

u

1fpc

1u
¦

1Ls

1u

" fpc−fpcref
#

u % du\ "2[06#

where Ls � L
s"T# is the secant speci_c latent heat\ fpcref
is the phase!change function at the reference

temperature and opc � o¼pc"T# is the phase!change strain tensor de_ned as]

opc � −0
2
ðds

pc" fpc−fpcref
#−ds

pc9
" fpc9

−fpcref
#Ł0\ "2[07#

where ds
pc � d¼s

pc"T# is the secant phase!change volumetric deformation[ The existence of this
volumetric deformation is a well!known experimental fact in the solidi_cation of many alloys "see
Flemings et al[\ 0863#[ In sharp contrast with the present approach\ this e}ect has been usually
taken into account in several thermomechanical models by assuming a large variation of the
thermal dilatation coe.cient in the mushy zone "see e[g[ Chow et al[\ 0884^ Celentano et al[\ 0884#[

A particular de_nition of Cs accounting for phase!change e}ects is considered in eqns "2[09#
and "2[04# "see Celentano\ 0885#[ During solidi_cation\ the alloy in liquid state becomes solid and\
therefore\ a qualitative change in its thermomechanical properties is produced[ This fact is taken
into account in the constitutive tensor written as]

Cs � Cs
vol¦"0−fpc#Cs

dev\ "2[08#

where Cs
vol and Cs

dev are the volumetric and deviatoric parts of Cs\ respectively[ Note that eqn "2[08#
is an additional constitutive assumption implicitly contained in the proposed speci_c free energy
function given above[ The importance of this de_nition of Cs will be pointed out below[

With the present de_nition of c\ expressed in terms of secant thermomechanical properties\ the
constitutive laws and the internal plastic dissipation can be obtained[ Details of such derivations
are given below[

2[2[ Constitutive laws

According to the de_nition given in Section 1\ the secant stressÐstrain constitutive law is]

s � Cs]"o−op−oth−opc#¦s9\ "2[19#

such that the additive strain decomposition is recovered as oe � o−op−oth−opc\ where oe is the so!
called elastic strain tensor[ It should be noted that this secant or hyperelastic constitutive law
circumvents the usual thermodynamic constraints "see Cassenti and Annigeri\ 0878#\ depends
exclusively on the thermoelastic and phase!change parts of the free energy function and is assumed
to be valid for the material in its di}erent states[ In particular\ taking into account the de_nition
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of Cs and the secant constitutive relation given above ðeqns "2[08# and "2[19#\ respectivelyŁ\ both
the classical constitutive law of a liquid at rest "i[e[\ zero deviatoric stress# and that corresponding
to a solid can be represented[ It should be also noted that R is indeterminate when s? � 9 and
fpc � 0[ However\ as Cth × 9 is assumed\ it can be observed that F ³ 9 for this particular situation[
Therefore\ a purely elastic behaviour of the material "l¾ � 9# is considered for this case[

Further\ the de_nition of c given above allows to compute the conjugate of the internal plastic
variables[ It should be noted that the relations s � −r9 1c:1op and T � −r9 1c:1zp and ful_lled
while Cp and Kp can be expressed by]

Cp � hCpqp\ "2[10#

Kp � −hKpkp\ "2[11#

resulting linear relations due to the particular de_nition of ctp given by eqn "2[03#[
The proposed expression for c allows us to derive the tangent variables of the model[ Firstly\ it

is important to remark that C � Cs "C being the tangent elastic constitutive tensor given by
C � 1s:1o# due to the small displacements:strains context assumed here[

Considering eqn "2[19# and the de_nitions given in Section 1\ the tangent conjugate of the
thermal dilatation b appearing in eqn "1[1# is]

b � Cs] 6as
th¦

1as
th

1T
"T−Tref#−

0
2 $ds

pc

1fpc

1T
¦

1ds
pc

1T
" fpc−fpcref

#%7 0¦
1Cs

1T
] oe\ "2[12#

where for constant material properties and ds
pc � 9 the standard expression is obtained\ i[e[\

b = Cs � cte\ as
th � cte\ ds

pc �9 � Cs] as
th0[ Tensor b can also be written as]

b � Cs] 0ath−
0
2

dpc

1fpc

1T1 0¦
1Cs

1T
] oe\ "2[13#

where ath � as
th¦1as

th:1T"T−Tref# is the tangent thermal dilatation coe.cient and
dpc � ds

pc¦1ds
pc:1T" fpc−fpcref

#"1fpc:1T#−0 is the tangent phase!change volumetric deformation such
that o¾th � ath0Tþ and o¾pc � −0:2dpc0f¾pc[ The thermal and phase!change strain rates have been exten!
sively used in the context of hypoelastic models to simulate casting processes "see e[g[ Bellet et al[\
0882\ Chow et al[\ 0884^ Smelser and Richmond\ 0877^ Zabaras et al[\ 0882\ 0885#[ Moreover\
de_ning the tangent speci_c latent heat L appearing in eqn "2[4# as]

L � Ls¦
1Ls

1T
" fpc−fpcref

# 0
1fpc

1T1
−0

\ "2[14#

the function Apc can also be written in terms of L as]

Apc � g
T

Tref

L
u

1fpc

1u
du[ "2[15#

It should be noted that for constant as
th\ ds

pc and Ls\ the respective tangent values coincide with
these secant ones[

Using standard concepts of plasticity theory\ the tangent constitutive law can be written as]
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s¾ � Cep] o¾−bepTþ\ "2[16#

where the elasto!plastic tangent constitutive tensor Cep is]

Cep � Cs−H"l¾#Cs] R & F\ "2[17#

and the thermoelasto!plastic tangent constitutive tensor bep is]

bep � b−H"lþ#xCs] R\ "2[18#

such that the plastic consistency parameter is given by]

l¾ � ðF] o¾¦xTþŁ\ "2[29#

considering the following respective expressions for F and x]

F �
0
Al

R] Cs\ "2[20a#

x �
0
Al

"b] R¦Ax#\ "2[20b#

with

Al � R] Cs] R−"0−fpc#1"hCpHq−hKpHkR] R#\ "2[20c#

Ax �"0−fpc# 0
1hCp

1T
qp−

1hKp

1T
kp] R1¦

1Cth

1T
−

1fpc

1T
Cp\ "2[20d#

H being the Heaviside function and ð Ł the Macauley symbol[
Furthermore\ the well!known plastic restriction "see e[g[ Lubliner\ 0889# 1F:1ak �= gk ³ 9 for

F � Fþ� 9 reads for this constitutive model as Al × 9 for F � Fþ� 9 which is clearly satis_ed if the
additional constraint "0−fpc#1"hCpHq−hKpHkR]R# ³ R] Cs] R is assumed\ where R] R � 2:1 and
the condition R] Cs] R × 9 is veri_ed taking into account the de_nitions given above[ In the solid
phase " fpc � 9#\ the particular situation represented by hCpHq−hKpHkR]R ³ 9 is characteristic of
"strain or work# hardening plastic materials[

According to the de_nitions given above\ the expressions of the speci_c entropy function
h � h¼ "o−op\ qp\ kp\ zp\ T#\ the speci_c internal energy v � v¼ "o−op\ qp\ kp\ zp\ T# and the tangent
speci_c heat capacity c � c¼"o−op\ qp\ kp\ T# can be found in Box 0[ It should be noted that they
preserve the additive decomposition previously assumed for c[

It can be clearly observed that eqn "2[4# includes the classical de_nition of the speci_c heat
capacity in the whole domain because the phase!change part of c does not play any role in the
expression of c[ In the particular case of constant properties\ c = Cs�cte\as

th�cte\cs�cte � cs is obtained[
Further\ considering that o−op is the thermoelastic deformation term "in the free energy de_nition
sense#\ it should be noted that the instantaneous elasticity assumption of the speci_c heat capacity\
usually accepted for metals "see e[g[ Lubliner\ 0889#\ is only ful_lled if the thermoplastic con!
tribution ctp is neglected "Gunasegaram et al[\ 0886^ Heinlein et al[\ 0875#[

The speci_c internal plastic heat source rp
int is also described in Box 0 by means of two equivalent

expressions[
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Box 0
Speci_c entropy function\ speci_c internal energy\ tangent speci_c heat capacity
and speci_c internal plastic heat source

Speci_c entropy function

h � h¼te"o−op\ T#¦h¼tp"qp\ kp\ zp\ T#¦h¼pc"o−op\ T#

with

hte � −
1cte

1T
� −

0
1r9

"o−op#]
1Cs

1T
]"o−op#¦

0
r9

"o−op#] Cs] 0ath

¦
0
r9

"o−op#]
1Cs

1T
] oth¦Ac¦h9

htp � −
1ctp

1T
�

0
1r9

1hCp

1T
"qp#1−

0
1r9

1hKp

1T
kp] kp¦

0
r9

zp

hpc � −
1cpc

1T
� Apc−

0
2r9

"o−op#] Cs] 0dpc

1fpc

1T
¦

0
r9

"o−op#]
1Cs

1T
] opc

Speci_c internal energy

v � v¼ te"o−op\ T#¦v¼ tp"qp\ kp\ zp\ T#¦v¼ pc"o−op\ T#

with

vte � cte−
1cte

1T
T �

0
1r9

"o−op#] cs]"o−op#−
0
r9

"o−op#] Cs] oth

¦cc¦
0
r9

"o−op#] s9−h9"T−T9#¦c9−
T

1r9

"o−op#]
1Cs

1T
]"o−op#

¦
T
r9

"o−op#] Cs] 0ath¦
T
r9

"o−op#]
1Cs

1T
] oth¦Ac¦Th9

vtp � ctp−
1ctp

1T
T � −

0
1r9

hCp"qp#¦
0

1r9

hKpkp] kp−
0
r9

Tzp¦
T

1r9

1hCp

1T
"qp#1

−
T

1r9

1hKp

1T
kp] kp¦

T
r9

zp

vpc � cpc−
1cpc

1T
T �cL−

0
r9

"o−op#] Cs] opc¦TApc

−
T

2r9

"o−op#] Cs] 0dpc

1fpc

1T
¦

T
r9

"o−op#]
1Cs

1T
] opc
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Box 0[*Continued

Tangent speci_c heat capacity

c � c¼te"o−op\ T#¦c¼tp"qp\ kp\ T#¦c¼pc"o−op\ T#

with

cte � −T1 11cte

1T1
� −

T
1r9

"o−op#]
11Cs

1T1
]"o−op#¦

1T
r9

"o−op#]
1Cs

1T
] 0ath

¦
T
r9

"o−op#] Cs] 0
1ath

1T
¦

T
r9

11Cs

1T1
] oth¦cs¦

1cs

1T
"T−Tref#

ctp � −T1 11ctp

1T1
�

T
1r9 $

11hCp

1T1
"qp#1−

11hKp

1T1
kp] kp %

cpc � −T1 11cpc

1T1
−L

1fpc

1T

� −
1T
2r9

"o−op#]
1Cs

1T
] 0dpc

1fpc

1T
−

1T
2r9

"o−op#] Cs] 0
1dpc

1T
1fpc

1T

−
1T
2r9

"o−op#] Cs] 0dpc

11fpc

1T1
¦

T
r9

"o−op#]
11Cs

1T1
] opc

Speci_c internal plastic heat source

rp
int � rp

o ] o¾¦rp
TTþ

with

rp
o � H"l¾#

Ar

r9

F
rp
T � H"l¾#

Ar

r9

x

and

Ar �"Tb¦s#] R¦Br

Br �"0−fpc# $Hq 0T
1hCp

1T
qp−Cp1−Hk 0T

1hKp

1T
kp¦Kp1] R%

in terms ofDp
int

rp
int �

T
r9

"b] R¦Ax#l¾¦
0
r9

Dp
int
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Box 1
Tangent stressÐstrain relation for an isentropic process

s¾ � Cep
h ] o¾

Isentropic elasto!plastic constitutive tensor

Cep
h � Ch−H"l¾h#"Ch] R¦BhAxb# & Fh

Isentropic tangent elastic constitutive tensor

Ch � Cs¦Bhb & b

Isentropic plastic consistency parameter

l¾h � ðFh] o¾Ł

with

Fh �
0
Ah

"F−xBhb#

Ah � 0−xBh"b] R¦Ax#

Bh �
T

r90c¦L
1fpc

1T1

Tangent stressÐstrain constitutive laws can also be obtained for di}erent particular ther!
modynamical situations[ For an isentropic process "h � h9c h¾ � 9#\ for instance\ such constitutive
law is shown in Box 1 where\ if the condition h¾ tp � 9 is additionally assumed\ Ax � 9 should be
considered in it[ As it will be shown in Section 4\ these isentropic constitutive tensors will play a
relevant role in a speci_c numerical strategy usually used to solve the _nite element equations of this
coupled problem[ Finally\ note that the condition htp � 0:r9z

p\ initially proposed and extensively
exploited by Armero and Simo "0881b# in thermomechanical problems without phase!change
e}ects\ is only satis_ed for constant hardening properties[

2[3[ Internal plastic dissipation

For the constitutive model already described\ the internal plastic dissipation becomes]

Dp
int � s] o¾p¦Cpq¾ p¦Kp] k¾ p¦Tz¾p

� 6ðs−"0−fpc#HkK
pŁ] R−"0−fpc#HqC

p−T 0
1Cth

1T
−

1fpc

1T
Cp17 l¾ − 9[ "2[21#

This condition is automatically satis_ed if there is not evolution of the internal plastic variables
"l¾ � 9#[ If this is not the case\ taking into account the de_nitions of Hq and Hk given above\ it can
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be proved that ðs−"0−fpc#HkK
pŁ] R − 9 "note\ however\ that the plastic work rate s] o¾p pro!

portional to s] R could be less than zero in this case# and\ in order to guarantee the ful_lment of
such equation\ the following three su.cient conditions have to be assumed] "i# hCp − 9\ "ii#
1Cth:1T ¾ 9 and "iii# 1fpc:1T − 9[ The _rst condition is related to the isotropic "strain or work#
hardening behaviour of the material and guarantees that Cp − 9\ while the second one refers to
the thermal softening e}ect[ Finally\ the third condition is a constraint to be considered in the
de_nition of fpc given by eqn "2[5#[

3[ Finite element formulation

In the context of the _nite element technique "see e[g[ Hughes\ 0876^ Zienkiewicz and Taylor\
0878#\ the discrete problem can be obtained via a spatial Galerkin projection of the semidiscrete
problem into a _nite dimensional subspace hVu and hVT of admissible C9 continuous shape
functions Nu W hVu and NT W hVT\ respectively[ Consequently\ the admissible {algorithmic| solu!
tions spaces t

hLu and t
hLT " for _xed time t $ Y#\ also consisting of typical C9 functions\ are de_ned

such that t
hu"X# W t

hLu and t
hT"X# W t

hLT\ respectively[ Making use of the standard spatial interp!
olation for the displacement and temperature _elds\ it leads to]

t
hu"X# � Nu"X#tU"e# "3[0a#

t
hT"X# � NT"X#tT"e# "3[0b#

where Nu � ðNu0
\ [ [ [ \ Nunnode

Ł with Nui
� NiI $ hVu and NT � ðNT0

\ [ [ [ \ NTnnode
Ł with NTi

� Ni $ hVT

both for i � 0\ [ [ [ \ nnode and e � 0\ [ [ [ \ nelem[
In the above\ Nu and NT are the element shape function matrices for the displacement and

temperature interpolation\ respectively[ Further\ tU"e# is the nodal displacement vector\ tT"e# is the
nodal temperature vector "the superscript e denotes element values# and I is the identity matrix[ It
should be noted that the same _nite element interpolation is used for each component of u and T[
For simplicity in the notation\ the subscript h will be dropped from here onwards[

Following standard procedures\ the global discretized thermomechanical equations can be
written in matrix form for a certain time t as]

RU � FU¦Ff−MUÝ−Fs � 9

RT � FT−"C−Cp#Tþ−KT−Lþpc−"G−Gp#Uþ � 9 "3[1#

where RU and RT are the mechanical and thermal residual vectors\ respectively[ The external force
vector is FU\ Ff is the mechanical contact vector\ M is the mass matrix and Fs denotes the internal
force vector[ Moreover\ FT is the external heat ~ux vector\ C is the capacity matrix\ K is the
conductivity matrix and Lþpc is the phase!change vector rate[ Furthermore\ G is the thermoelastic
coupling matrix\ while Cp and Gp are coupling matrices due to plastic e}ects[

The time integration of the terms containing derivatives of U and T in system "3[1# is performed
via the Newmark method and the generalized mid!point rule algorithm\ respectively "see e[g[
Hughes\ 0876^ Zienkiewicz and Taylor\ 0878#[ The latter has been also used to integrate all the
rate equations involved in the constitutive model presented in Section 2[

As usual\ all vectors and matrices are assembled from the element contributions in the standard



D[ Celentano et al[:International Journal of Solids and Structures 25 "0888# 1230Ð12671243

Box 2
Element matrices and vectors in the discretized thermomechanical equations

F"e#
U � gV"e#

NT
u bF dV¦gG"e#

s

NT
u t¹dGs¦ s

nc
U

j�0

F"e#
cU

j

F"e#
s � gV"e#

BTs dV

F"e#
f � gG"e#

f

NT
u tf dGf

M"e# � gV"e#

NT
u r9Nu dV

F"e# � gV"e#

NT
T r9r dV¦gG"e#

q

NT
T q¹ dGq¦gG"e#

c

NT
T hTenv dGc¦ s

nc
T

j�0

F"e#
cT

j

C"e# � gV"e#

NT
T r9cNT dV

K"e# � gV"e#

"9NT#Tk9NT dV¦gG"e#
c

NT
T hNT dGc¦gG"e#

f
"0#

NT
`T

h`N`T
dGf

Lþ"e#
pc � gV"e#

NT
T r9Lf¾pc dV

C"e#
p � gV"e#

NT
T rp

TNT dV

G"e# � gV"e#

NT
T TbTB dV

G"e#
p � gV"e#

NT
T rpT

o B dV

with

N`T
� ðNT\ −NTŁ

L"e#
pc � gV"e#

NT
T r9L

s" fpc−fpcref
# dV

manner[ The form of the di}erent elemental expressions appearing in system "3[1# can be seen in
Box 2\ where the superscript T denotes the transpose symbol and B is the classical strainÐ
displacement matrix[ Besides\ FcU

and FcT
represent the point force vector and the temperature!
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dependent concentrated heat ~ux vector\ respectively\ with ncU
and ncT

being the corresponding
number of loaded element nodes[

The mechanical boundary conditions are given by the prescribed traction vector t acting on Gs

and the contact traction vector tf due to the fact that two or more bodies can interact between
themselves through Gf such that Gf W Gs[ Note that Ff is zero in absence of contact e}ects "see e[g[
Celentano et al[\ 0885^ Wriggers and Miehe\ 0881#[ Further\ frictionless contact conditions are
assumed for tf[ Moreover\ the thermal boundary conditions are expressed by the prescribed normal
heat ~ux q¹ on Gq and the heat transfer coe.cients h � h¼ "T# and h` � h¼`"T"i#\ `n\ pn# accounting
for conductionÐconvectionÐradiation phenomena "note that a unique heat transfer coe.cient is
assumed to include these three phenomena#^ the _rst between a body and its surrounding environ!
ment at Gc and the second between two bodies through Gf"Gc W Gq and Gf W Gq#\ where `n is the
so!called normal gap and pn is the normal contact pressure[ As it will be shown in Section 5\ an
extremely important fact in many casting simulations is that h` may depend on `n and pn in order
to represent the strong variations of the heat transfer rates across Gf for di}erent contact conditions[
Also note that the third integral of K is only evaluated in Gf"0#

due to the consideration of matrix
N`T

in its expression[ Further details about the thermomechanical contact models used in the
present work can be found in Celentano et al[ "0885#[

It should be noted that the vector Lþpc contains the latent heat e}ect when f¾pc � 9 where\ in this
case\ a non!standard spatial integration has been adopted to compute Lpc accurately "see Celentano
et al[\ 0883 for more details#[ Finally\ as expected\ the plastic coupling matrices "Cp and Gp# are
zero if no plastic evolutions take place[

4[ Solution strategy

One possible way to solve the coupled system of eqns "3[1# is via a staggered scheme "see e[g[
Armero and Simo\ 0881a\ b^ Celentano et al[\ 0885^ Kleiber\ 0880#[ Within this framework\ di}erent
implementations are available[ In particular\ the so!called {IterativeÐConvergedÐConsecutive|
strategy\ widely exploited by Celentano "0883#\ is presented in Box 3[ The objective is to _nd the
numerical solution of the thermomechanical problem at time t¦Dt assuming a known response
for time t[ To this end\ the coupled thermomechanical solution is obtained by solving the thermal
and mechanical problems separately and checking\ additionally\ the global convergence criterion[
Such problems are expressed by the energy and momentum equations together with the corres!
ponding boundary constraints\ initial conditions and constitutive laws[ It should be noted that the
strategy name given above is due to the fact that the thermomechanical solution is iteratively
achieved by means of locally converged thermal and mechanical solutions obtained in a consecutive
form[

In Box 3\ DT is the nodal temperature vector increment\ jU is the local iteration index associated
to the thermal problem\ JTT � −1RT:1T is the thermal Jacobian matrix and ITU is the {thermal
interchange array| to be transferred to the mechanical problem[ Similarly\ DU is the nodal dis!
placement vector increment\ jU is the local iteration index associated to the mechanical problem\
JUU � −1RU:1U is the mechanical Jacobian matrix and IUT is the {mechanical interchange array|
to be transferred to the thermal problem[ Moreover\ jG is the global iteration index related to the
thermomechanical problem[ As mentioned above\ DU and DT are computed separately[
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Box 3
Staggered scheme for coupled thermomechanical problems] {IterativeÐConvergedÐ
Consecutive| strategy

Thermomechanical problem at time t¦Dt]

Initial conditions]

t¦DtT9\9 � tT

t¦DtU9\9 � tU

Global iterative solution]

, thermal problem "heat balance equation#

, mechanical problem "momentum equation#

, global convergence 9 jG � 9\ [ [ [ \ niterG

,thermal problem "heat balance equation#

input]

t¦DtI jU\jG
UT � ðt¦DtojU\jG\ t¦Dto¾ jU\jG\ t¦DtopjU\jG\ t¦DtqpjU\jG\

t¦DtkpjU\jG\ t¦Dt`jU\jG
n \ t¦DtpjU\jG

n Ł

local iterative solution]

t¦DtJ jU−0\jG
TT DT jU\jG � t¦DtR jU−0\jG

T

t¦DtT jU\jG � t¦DtT jU−0\jG¦DT jU\jG

>t¦DtR jU\jG
T >1

>t¦DtFT>1

³ oRT

J

G

f

F

G

j

jU � 0\ [ [ [ \ niterT

output]

t¦DtI jU\jG
TU � ðt¦DtTjU\jG\ t¦DtTþjU\jG\ t¦Dtf jU\jG

pc Ł

t¦DtT9\jG¦0 � t¦DtT jU\jG

The main features of this staggered scheme are]

*a proper interchange of variables is performed between the two problems with the sake of
computing all the thermomechanical coupling e}ects[ The interchange arrays are] ITU � ðT\ Tþ\ fpcŁ
and IUT � ðo\ o¾\ op\ qp\ kp\ `n\ pnŁ[ Note that the global iteration index jG only increases when the
two interchanges take place\

*a global convergence criteria is adopted for the coupled thermomechanical problem due to the
highly non!linearities existing in it[ Therefore\ it is assumed that a converged thermomechanical
solution is achieved when the two conditions shown in Box 3 are ful_lled for the same jG"> = >1

is the L1 vector norm\ and oRT
and oRU

are the thermal and mechanical measures of the admissible
out!of!balance residuals\ respectively#\
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Box[ 3[*Continued

, mechanical problem "momentum equation#

input]

t¦DtI jU\jG
TU � ðt¦DtTjU\jG\ t¦DtTþjU\jG\ t¦Dtf jU\jG

pc Ł

local iterative solution]

t¦DtJ jU−0\jG
UU DU jU\jG � t¦DtR jU−0\jG

U

t¦DtU jU\jG � t¦DtU jU−0\jG¦DU jU\jG

>t¦DtR jU\jG
U >1

>t¦DtFU>1

³ oRU

J

G

f

F

G

j

jU � 0\ [ [ [ \ niterU

output]

t¦DtI jU\jG
UT � ðt¦DtojU\jG\ t¦Dto¾

jU\jG\ t¦DtopjU\jG\ t¦DtqpjU\jG\

t¦DtkpjU\jG\ t¦Dt`jU\jG
n \ t¦DtpjU\jG

n Ł

t¦DtU9\jG¦0 � t¦DtU jU\jG

, global convergence

>t¦DtR jU\jG
U >1

>t¦DtFU>1

³ oRU

>t¦DtR jU\jG
T >1

>t¦DtFT>1

³ oRT

*if only ITU exists\ the problem is thermally unidirectional coupled[ In this case\ niterG � 0 where
ITU contains converged values\

*the problem is bidirectional coupled when ITU and IUT are performed[

The Jacobian matrices used in this staggered scheme for the isothermal\ adiabatic and improved
isothermal partitions can be found in Box 4[ These partitions are fractional step methods associated
with a two phase operator split of the full non!linear thermomechanical system "3[1# into a
thermal phase at _xed con_guration followed by an isothermal or adiabatic mechanical phase[ The
isothermal partition is only conditionally stable while the adiabatic split preserves the unconditional
stability property characteristic of fully implicit "monolithic# schemes "see e[g[ Armero and Simo\
0881a\ b#[ However\ as reported by Celentano "0883# for a simpler model than the one proposed
here\ the improved isothermal split is stable even when the coupling stability conditions of the
numerical solution when using the isothermal partition for quasi!static and dynamic problems are
violated[

Some simpli_cative assumptions have been considered in the derivation of JTT by neglecting the
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Box 4
Jacobian matrices for di}erent partitions

, isothermal split]

JTT � K¦
0
Dt

"C¦Cpc−Cp#

JUU � KU¦Kf

, adiabatic split]

JTT � K¦
0
Dt

"C¦Cpc−Cp#

JUU � KUh
¦Kf

, improved isothermal split]

JTT � K¦
0
Dt

"C¦Cpc−Cp¦Cth#

JUU � KU¦Kf

temperature dependence of the thermal properties and external actions[ The element contributions
of the matrices involved in the Jacobian expressions are shown in Box 5\ where KU is the sti}ness
matrix\ KUh

is the isentropic sti}ness matrix\ Kf is the contact matrix\ Cpc is the phase!change
matrix and Cth is the thermal coupling matrix "tr is the trace symbol# which is obtained by
performing the additive strain decomposition of the thermoelastic coupling term GUþ[

Once more\ the evaluation of Kf is only done at the boundary Gf"0#
due to the consideration of

matrix N`u
in its expression[ The normal asperity sti}ness En guarantees the perfect impenetrability

condition as En : �[ The derivation of the contact constitutive tensor Cf is straightforward for
`n ³ 9 and the open normal gap situation given by `n × 9[ It should be noted\ however\ that for
the particular case of `n � 9\ a regularized tensor is used in order to avoid numerical oscillations[
Moreover\ an exhaustive study on the computation of Cpc\ which is crucial for the convergence
and stability of the thermal numerical solution\ can be found in Celentano et al[ "0883#[

Finally\ in this context\ the quadratic convergence of the NewtonÐRaphson|s method may not
be achieved[ Nevertheless\ the thermal and mechanical residuals are {exactly| "within the numerical
frame# evaluated leading to a conservative formulation in the weak form sense[

5[ Numerical examples

5[0[ A unidirectional solidi_cation example

A unidirectional solidi_cation problem\ previously analyzed by Heinlein et al[ "0875# and
Zabaras et al[ "0889#\ is here undertaken in order to show the performance of the proposed
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Box 5
Element matrices appearing in the Jacobian expressions

K"e#
U � gV"e#

BTCepB dV

K"e#
Uh

� gV"e#

BTCep
h B dV

K"e#
f � gG"e#

F
"0#

NT
`u

CfN`u
dGf

C"e#
pc � gV"e#

NT
T r9L

1fpc

1T
NT dV

C"e#
th � gV"e#

NT
T T tr"b#athNT dV

with

N`u
� ðNu\ −NuŁ

Cf � 8
n"0#ET

nu for `n ³ 9

Cf
r for `n � 9

9 for `n × 9

Enu � Enn"0#

Table 0
Thermal properties of the aluminium

, Density] r9 � 1549[9 ðkg:m2Ł

, Speci_c heat] c � 9[1415 ðkcal:kg>CŁ

, Heat conductivity] k � 9[9437 ðkcal:ms>CŁ

, Latent heat] L � 83[33 ðkcal:kgŁ

, Melting temperature] Tm � 559 ð>CŁ

model[ The geometry of the problem is a rectangular region "width � 9[90 m in the x direction\
height � 9[14 m in the y direction and unit thickness# initially occupied with high purity liquid
aluminium at the melting temperature Tm[ The thermal and mechanical properties of the aluminium
are listed in Tables 0 and 1\ respectively[ For this material\ fpc � H"T−Tm# "H being the Heaviside
function#[ Plane strain conditions have been assumed and a particular de_nition of the inelastic
deformation rate is used "see Zabaras et al[\ 0889#]
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Table 1
Mechanical properties of the aluminium

, Poisson ratio] n � 9[26

, Young modulus]
E ðMpaŁ T ð>CŁ
5[82×093 9[9
3[9347×093 559[9

, Tangent thermal dilatation coe.cient]
ath ð0:>CŁ T ð>CŁ
12[08×09−5 14[9
16[75×09−5 299[9
29[12×09−5 399[9
27[244×09−5 559[9

, Coe.cients of constitutive law]
Coe.cient Value
Az 9[271×0901 ðs−0Ł
Bz 9[926 ðMPa−0Ł
Cz 07738 ð>KŁ
nz 2[73

The variations of E and ath have been assumed to be piecewise linear
within the mentioned temperatures[ Below the lowest and above the
highest temperatures\ the properties are assumed to remain constant at
the same value de_ned for the extreme temperature[

o¾p �
2
1

Az e−
Cz

T¦162
ðsinh"Bzs¹ #Łnz

s¹
s?\ "5[0#

where Az\ Bz\ Cz and nz are material constants\ s¹ � z2J1 "J1 � 0:1s?] s?# is the e}ective stress\ the
temperature T must be in degrees Celsius\ no hardening e}ects are considered and\ moreover\
ds

pc � 9 is adopted[ Note that this evolution equation is similar to "2[0# with
l¾ � Az e−ðCz:"T¦162#Ł ðsinh"Bzs¹ #Łnz[ The boundaries at x � 9 and x � 9[90 m are insulated and
restrained from motion in the x!direction while the side y � 9 is _xed[ A temperature cooling
boundary condition of the following form is applied at y � 9]

TÞ� Ta¦"Tm−Ta# e−Rt\ "5[1#

where Ta � 299>C is the _nal steady!state temperature and R � 9[912 s−0 is a cooling parameter[
Twenty!_ve four!noded isoparametric elements have been used in this example with a time step of
19 s[
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Fig[ 0[ A unidirectional solidi_cation example] "a# temperature evolutions at di}erent locations\ "b# phase!change front
position evolution and "c# lateral stress evolution at di}erent locations[

The temperature evolution at di}erent locations is shown in Fig[ 0"a#[ The phase!change front
position history is plotted in Fig[ 0"b#[ All these results are in perfect agreement with those reported
by Heinlein et al[ "0875# and Zabaras et al[ "0889#[ The computed lateral stress histories at various
points are presented in Fig[ 0"c#[ As shown in this last _gure\ the lateral stress is in general tensile
and builds up any location with the arrival of the front due to thermal contractions[ Further\ it
can be seen that the stress near y � 9 eventually relaxes while away from this boundary the stresses
are smaller due to the low temperature rate[ Once more\ these results are very similar to those
reported by Heinlein et al[ "0875# and Zabaras et al[ "0889#[

5[1[ Solidi_cation of a circular cylinder

The solidi_cation of an axially symmetric cylinder "radius � 9[907 m and height � 9[990 m#
initially _lled with liquid aluminium at melting temperature is analyzed[ For this problem\ studied
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Fig[ 1[ Solidi_cation of a circular cylinder] "a# temperature evolutions at di}erent locations\ "b# phase!change front
position evolution and "c# stress evolution at r � 9[907[

by Zabaras et al[ "0889\ 0880#\ the thermomechanical material properties are the same as those
employed in the _rst example[ Plane strain conditions in the axial direction with a traction!free
outer surface "r � 9[907 m# have been assumed and eqn "5[0# is adopted to describe the inelastic
strain rate[ The top and bottom are insulated while the outer surface is cooled with the temperature
history depicted in eqn "5[1# with Ta �499>C and R�9[0 s−0[ The _nite element mesh considered in
the analysis consisted of eighteen four!noded isoparametric elements[ The time step chosen was 9[4 s[

The temperature history at various locations and the phase!change front position are\ respec!
tively\ shown in Fig[ 1"a# and "b#[ These results are in excellent agreement to those reported by
Zabaras et al[ "0889#[ The radial\ axial and hoop stress evolution up to the solidi_cation time
"approximately 7[2 s# at r � 9[907 m are presented in Fig[ 1"c#[ As seen from this _gure\ at the end
of the solidi_cation both the hoop and axial stresses are compressive at the outer surface[ The
trend of the stresses found in this paper is similar to that reported by Smelser and Richmond
"0887# and in a good quantitative agreement with the results obtained by Zabaras et al[ "0889#[
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5[2[ Li`ht alloy solidi_cation in a permanent composite mould] experimental validation

In a casting situation where an aluminium alloy solidi_es in a permanent mould\ a gap initiates
and grows between the shrinking casting and the mould "see e[g[ Gunasegaram et al[\ 0884^ Nishida
et al[\ 0875#[ It is well known that the formation of this gap results in a substantial reduction in
heat transfer rates across the castingÐmould interface and hence is an important factor in sol!
idi_cation studies[ Due to the thermomechanical nature of the gap formation\ it has long been
recognized that a purely thermal analysis cannot properly represent this fact "see e[g[ Bellet et al[\
0882\ 0885^ Celentano\ 0883^ Celentano et al[\ 0884\ 0885^ Chow et al[\ 0884^ Gunasegaram et al[\
0886^ Smelser and Richmond\ 0877^ Trovant and Argyropoulos\ 0885^ Vicente!Hernandez et al[\
0884#[ Other topics of interest are the description of the thermomechanical behaviour of the alloy
and the mould during the whole process with a special emphasis on the phase!change e}ects
occurring in the alloy solidi_cation range\ and the in~uence of selected casting parameters "e[g[\
mould preheat# on the solidi_cation pattern[

The objective of this section is the experimental validation of the present thermomechanical
formulation in the analysis of the solidi_cation process of an aluminium alloy in a permanent
composite mould[ In the experiments "see Gunasegaram et al[\ 0886#\ commercial aluminium alloy
Al!6 Si!9[2 Mg was gravity cast in a composite permanent mould made of H02 hot work steel and
beryllium copper "BeCu\ ASTM] C06409# along with insulating tombo marine board[ The overall
experimental set up is shown in Fig[ 2[ The casting geometry was a stepped vertical cylindrical
block[ The permanent composite mould comprises materials selected on the basis of their thermal
properties and assembled and operated in such a way as to promote directional solidi_cation of
the casting[ The metallic components of the mould were bolted onto each other[ The H02 "bottom#
component was bolted down to a base via through!holes drilled in the tombo insulation[ No mould
coat was used\ except at the casting!H02 feeder interface and mouldÐmould interfaces where an
insulating ladle coat was applied[ The temperature!dependent thermophysical and mechanical
properties of all these materials can be found in Tables 2 and 3\ respectively[ In particular\ an
experimental!based solid fraction!temperature relationship with a temperature!dependent speci_c
latent heat value has been considered in the simulations[

Several thermocouples "TC# were inserted in the casting and the mould in order to obtain
temperature histories "see Fig[ 2#[ It may be noted that those labelled 0Ð8 were chosen since they
were the most relevant[ In particular\ TC 0Ð5 were located in the same horizontal planes "A and
B# of the linear variable displacement transformer "LVDT# probes detecting casting and mould
radial displacement evolutions at the interface[ Further details of the data acquisition system may
be found in Gunasegaram et al[ "0884#\ 0886#[

Two di}erent experiments have been performed to evaluate the e}ect of low and high mould
preheat cases "experiments I and II\ respectively# on the initiation time and growth rate of the
normal gap[

In these experiments\ the correlation between the measured normal gap size "calculated as the
di}erence between the measured displacements of the corresponding surfaces of the casting and
the mould# and the castingÐmould interfacial heat transfer coe.cient "i[e[\ the h` � h
`" `n# relation!
ship# was obtained in Gunasegaram et al[ "0886# by solving the inverse heat conduction problem[
The same methodology was used in the derivation of the mould!ambient heat transfer coe.cients[
The obtained heat transfer coe.cients at the di}erent interfaces are presented in Table 4[ It should
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Fig[ 2[ Validation test] experimental set up] "a# half section elevation and "b# top view[ All dimensions in mm[
Thermocouple numbers are shown within circles[
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Table 2
Thermal properties of the materials used in the experiments

Thermal properties of casting alloy
, Density]

r×092 ðkg:m2Ł T ð>CŁ
1[57 499
1[47 434
1[47 596[7
1[42 500

, Tangent speci_c heat]
c ðJ:kg>KŁ T ð>CŁ
765 9[9
815 099
861 199

0906 299
0950 399
0094 499
0014 434
0014 444
0974 500

, Conductivity]
k ðJ:ms>KŁ T ð>CŁ
059 9
049 099
039 399
049 444
023 457
005 469
87 592
84 597

099 500
199 519
299 549
499 649

, Solid fraction]
"0−fpc# T ð>CŁ L×092 ðJ:kgŁ
0[999 434 384
9[809 444 384
9[718 452 384
9[794 453 384
9[625 454 287
9[449 455 287
9[394 478 287
9[083 500 287
9[026 503 287
9[999 504 287

The variations of r\ c\ k\ "0−fpc# and L have been assumed to be piecewise linear within the
mentioned temperatures[ Below the lowest and above the highest temperatures\ the properties
are assumed to remain constant at the same value de_ned for the extreme temperature[
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Table 2[*Continued

Thermal properties of H02 steel

, Density] 6515 ðkg:m2Ł

, Tangent speci_c heat]
c ðJ:kg>KŁ T ð>CŁ
349 12
354 49
363 64
370 099
377 014
385 049
493 064
401 199
410 114
420 149
431 164
443 299
456 214
472 249
487 264
509 399
512 314
526 349
542 364
562 499
587 414
612 449
638 464
669 599
815 699

, Conductivity]
k ðJ:ms>KŁ T ð>CŁ
10[926 19
11[778 099
13[605 199
15[126 299
16[296 399
16[225 499
16[857 599

The variations of c and k have been assumed to be piece!
wise linear within the mentioned temperatures[ Below the
lowest and above the highest temperatures\ the properties
are assumed to remain constant at the same value de_ned
for the extreme temperature[



D[ Celentano et al[:International Journal of Solids and Structures 25 "0888# 1230Ð1267 1256

Table 2[*Continued

Thermal properties of BeCu steel

, Density] 7649 ðkg:m2Ł

, Tangent speci_c heat]
c ðJ:kg>KŁ T ð>CŁ
284 12
399 49
393 64
397 099
301 014
304 049
306 064
308 199
310 114
312 149
314 164
316 299
318 214
321 249
323 264
325 399
327 314
330 349
332 364
334 499
336 414
338 449
349 464
340 599
342 514
344 549

, Conductivity]
k ðJ:ms>KŁ T ð>CŁ
159[135 12
166[625 099
181[445 199
290[020 299
298[274 399
296[484 499
295[107 599
297[823 549

The variations of c and k have been assumed to be piece!
wise linear within the mentioned temperatures[ Below the
lowest and above the highest temperatures\ the properties
are assumed to remain constant at the same value de_ned
for the extreme temperature[
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Table 2[*Continued

Thermal properties of Tombo

, Density] 559 ðkg:m2Ł

, Speci_c Heat] 0029 ðJ:kg>KŁ

, Conductivity]
k ðJ:ms>KŁ T ð>CŁ
9[979 099
9[974 199
9[984 299
9[094 399
9[019 499

The variations of k have been assumed to be piecewise
linear within the mentioned temperatures[ Below the low!
est and above the highest temperatures\ the properties
are assumed to remain constant at the same value de_ned
for the extreme temperature[

be noted that\ in general\ di}erent values for these coe.cients have been derived for each mould
component[

A structured 1!D _nite element mesh composed of about 449 axisymmetric four!noded iso!
parametric quadrilateral elements has been used for the numerical analysis of this problem[
The simulations have been carried out with VULCAN "see Celentano\ 0885#\ a fully coupled
thermomechanical _nite element code in which the constitutive models presented in this work have
been implemented[ The bidirectional coupling numerical strategy shown in Box 3 was employed
in the analysis where\ additionally\ it can be demonstrated that the isothermal split is stable for
this problem since its coupling stability conditions are not violated[ Moreover\ the current study
does not include ~uid ~ow and hence assumes instantaneous _ll of the mould cavity[

The mechanical boundary conditions used in the simulations take into account the e}ects of the
bolts joining the mould components "no relative displacement between mould materials at inter!
faces# and the G!clamp placed on the upper part of the H02 feeder "no displacement at external
faces of the feeder in the horizontal plane corresponding to the clamp|s position#[ Moreover\ a
frictionless contact model with En � 0909 MPa:mm is considered at the castingÐmould interfaces[

In the experiments\ an air:gas mixture was used for mould preheating[ The initial temperatures
attained by the casting and the various components of the composite mould for the experiments I
and II are given in Table 5[

Figure 3 shows the experimentally measured and computed temperature histories while the
radial displacement and normal gap evolutions are presented in Fig[ 4\ both for experiment I[
Additionally\ similar results are presented in Figs 5 and 6 for experiment II[

As it can be seen in Figs 3 and 5\ satisfactory agreement is obtained between experimental and
simulated temperature evolutions for both cases[ In particular\ a reasonably good description is
achieved in the phase!change region[

It is found in the experiments that the gap initiates when the alloy temperature close to the
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Table 3
Mechanical properties of the materials used in the exper!
iments

Mechanical properties of casting alloy

, Poisson ratio] n � 9[22

, Young modulus]
E ðMPaŁ T ð>CŁ
61[3×092 14[9
0[9×092 434[9

, Secant thermal dilatation coe.cient]
as

th×09−5 ð0:>CŁ T ð>CŁ
10[4 099[9
11[4 199[9
12[4 299[9

, Thermal hardening function]
Cth ðMPaŁ T ð>CŁ
099 14[9

9[90 434[9

, Isotropic hardening modulus] 099 ðMPaŁ

, Kinematic hardening modulus] 099 ðMPaŁ

, Secant phase!change volumetric deformation] 9[90

The variations of E\ as
th and Cth have been assumed to be

piecewise linear within the mentioned temperatures[ Below
the lowest and above the highest temperatures\ the proper!
ties are assumed to remain constant at the same value de_ned
for the extreme temperature[

casting surface falls to approximately 439>C\ nearly independent of mould preheat\ mould material\
cooling rate\ casting section radius and:or metallostatic head[ This e}ect is closely related to the
hardening development characteristics during the alloy solidi_cation "see e[g[ Singer and Cotrelli\
0835#[

As may be seen in Figs 4 and 6\ the gaps do not initiate until the casting surface follows the
mould surface due to lack of strength in the solidifying casting[ Although good qualitative agree!
ment between measured and numerically predicted radial displacement and gap evolutions has
been obtained\ the quantitative _tting is only reasonable[ Reasons for this deviation may be due
to the approximate nature of the thermal hardening function!temperature relationship used for
the casting alloy at high temperatures "particularly in the mushy zone#\ the accuracy in the heat
transfer coe.cients considered in the analysis\ the assumption of uniform initial temperature
distribution for the casting and every component of the mould and the inward ~exing of the
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Table 3[*Continued

Mechanical properties of H02 steel

, Poisson ratio] n � 9[29

, Young modulus] 105×092 ðMPaŁ

, Secant thermal dilatation coe.cient]

as
th×09−5 ð0:>CŁ T ð>CŁ

00[4 099[9
01[9 199[9
01[1 299[9
01[4 399[9
01[7 499[9
02[9 599[9

, Thermal hardening function]
Cth ðMPaŁ T ð>CŁ
0994 314[9
719 439[9
589 484[9
249 549[9

The variations of as
th and Cth have been assumed to be piece!

wise linear within the mentioned temperatures[ Below the
lowest and above the highest temperatures\ the properties
are assumed to remain constant at the same value de_ned
for the extreme temperature[

Mechanical properties of BeCu steel

, Poisson ratio] n � 9[17

, Young modulus] 021[4×092 ðMPaŁ

, Secant thermal dilatation coe.cient] 06[5×09−5 ð0:>CŁ

, Thermal hardening function]
Cth ðMPaŁ T ð>CŁ
659 19[9
159 199[9

The variations of Cth have been assumed to be piecewise
linear within the mentioned temperatures[ Below the lowest
and above the highest temperatures\ the properties are
assumed to remain constant at the same value de_ned for
the extreme temperature[

Mechanical properties of Tombo

, Poisson ratio] n � 9[29

, Young modulus] 1[7×092 ðMPaŁ

, Secant thermal dilatation coe.cient] 9[9 ð0:>CŁ

, Thermal hardening function] 9[973 ðMPaŁ
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Table 4
Heat transfer coe.cients at the di}erent interfaces

Thermal boundary conditions
Heat transfer coe.cient

Interface ðW m−1 K−0Ł

H02 "bottom#*air 29
BeCu "middle#*air 29
BeCu "top#*air 29
H02 " feeder#*air 29
Tombo*air 19
Casting*air 49

H02 "bottom#*casting]
`n ðmmŁ

09\999 9[999
3499 9[994
2999 9[909
1999 9[904
0499 9[929

BeCu "middle and top#*casting]
`n ðmmŁ

7999 9[999
1799 9[994
0599 9[909
0199 9[904

H02 " feeder#*casting] 699
Casting*Tombo 399
H02 "bottom#*Tombo 149
H02 "bottom#*BeCu "middle# 1999
BeCu "middle#*BeCu "top# 1999
BeCu "top#*H02 " feeder# 1999

The variations of h have been assumed to be piecewise linear within the mentioned
gaps[ Below the lowest and above the highest gaps\ the values of h are assumed to
remain constant at the same value de_ned for the extreme gap[

mould as soon as the melt is poured into the cavity[ Note\ however\ that the numerical solutions
approximately adjust the measured initiation times of the normal gap[

For these experiments\ it is also observed that the rate of growth of the gap width is greater in
the lower mould preheat case "Figs 4 and 6#[ The cause for the latter is shown to be the combined
e}ect of a higher casting shrinkage rate and a larger mould expansion rate[ It can be seen that the
numerical solution approaches the experimental values[ It should be also noted that below a certain
mould preheat\ for a given mould material\ not much reduction in solidi_cation times was obtained
due to the drastic decrease of h` once a normal gap is developed[
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Table 5
Initial temperatures ">C# for the experiments I and II

Material Experiment I Experiment II

Casting alloy 544 574
H02 "bottom# 084 288
BeCu "middle# 125 376
BeCu "top# 134 402
H02 " feeder# 135 462
Tombo insulation 022 180

The gap initiates earlier in the BeCu "middle# part of the mould than in the H02 "bottom# part
when the preheat is lower "experiment I\ Fig[ 4# but later when the preheat is higher "experiment
II\ Fig[ 6#[ These phenomena can be\ respectively\ explained by the better early chilling capabilities
of BeCu and the di}erent preheats of BeCu "middle# and H02 "bottom# for experiment II "see
Table 5#[

6[ Conclusions

A coupled thermomechanical model to simulate the light alloy solidi_cation process in a per!
manent composite mould has been presented[ The model is formulated within the plasticity theory
framework and accounts for the di}erent behaviours of the materials involved in the problem[ To
this end\ a set of appropriate internal variables and a speci_c free energy function have been
proposed in order to derive the secant and tangent expressions for all the constitutive laws[ The
main features of such equations are the consideration of an experimental!based phase!change
function\ a temperature!dependent speci_c latent heat value and a phase!change strain tensor[

The corresponding _nite element formulation standing out the importance of the variable
thermomechanical boundary conditions occurring in the problem has also been presented[

Special attention has been devoted to the numerical strategy used to solve the highly non!linear
coupled system of equations[ An enhanced staggered scheme allowing the consideration of di}erent
partitions has been used[

The model has been used in the simulation of two simple casting examples previously analysed
by other researchers[ Moreover\ the model has been also validated with laboratory measurements
obtained during an experimental test where satisfactory agreement between numerical and exper!
imental results can be observed for di}erent casting situations[ However\ further research in the
thermomechanical material description specially at high temperatures is still necessary in order to
achieve even more realistic numerical responses[
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Fig[ 3[ Validation test] temperature evolutions for the experiment I] "a# thermocouples 0\ 1 and 2\ "b# thermocouples 3\
4 and 5 and "c# thermocouples 6\ 7 and 8[



D[ Celentano et al[:International Journal of Solids and Structures 25 "0888# 1230Ð12671263

Fig[ 4[ Validation test] radial displacement evolutions for the experiment I] "a# LVDTs 0 and 1 and "b# LVDTs 2 and
3[ Normal gap evolutions for the experiment I] "c# LVDT planes A and B[
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Fig[ 5[ Validation test] temperature evolutions for the experiment II] "a# thermocouples 0\ 1 and 2\ "b# thermocouples
3\ 4 and 5 and "c# thermocouples 6\ 7 and 8[
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Fig[ 6[ Validation test] radial displacement evolutions for the experiment II] "a# LVDTs 0 and 1 and "b# LVDTs 2 and
3[ Normal gap evolutions for the experiment II] "c# LVDT planes A and B[
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